Hyperekplexia is a rare sensorimotor syndrome characterized by pathological startle reflex in response to unexpected trivial stimuli for which there is no specific treatment. Neonates suffer from hypertonia and are at high risk of sudden death due to apnea episodes. Mutations in the human SLC6A5 gene encoding the neuronal glycine transporter GlyT2 may disrupt the inhibitory glycinergic neurotransmission and cause a presynaptic form of the disease. The phenotype of missense mutations giving rise to protein misfolding but maintaining residual activity could be rescued by facilitating folding or intracellular trafficking. In this report, we characterized the trafficking properties of two mutants associated with hyperekplexia (A277T and Y707C, rat numbering). Transporter molecules were partially retained in the endoplasmic reticulum showing increased interaction with the endoplasmic reticulum chaperone calnexin. One transporter variant had export difficulties and increased ubiquitination levels, suggestive of enhanced endoplasmic reticulum-associated degradation. However, the two mutant transporters were amenable to correction by calnexin overexpression. Within the search for compounds capable of rescuing mutant phenotypes, we found that the arachidonic acid derivative N-arachidonoyl glycine can rescue the trafficking defects of the two variants in heterologous cells and rat brain cortical neurons. N-arachidonoyl glycine improves the endoplasmic reticulum output by reducing the interaction transporter/calnexin, increasing membrane expression and improving transport activity in a comparable way as the well-established chemical chaperone 4-phenyl-butyrate. This work identifies N-arachidonoyl glycine as a promising compound with potential for hyperekplexia therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2021.108543 | DOI Listing |
Front Immunol
January 2025
Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China.
Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) are integral to T cell biology, influencing immune responses and associated diseases. This review explores the interplay between the UPR and T cell immunity, highlighting the role of these cellular processes in T cell activation, differentiation, and function. The UPR, mediated by IRE1, PERK, and ATF6, is crucial for maintaining ER homeostasis and supporting T cell survival under stress.
View Article and Find Full Text PDFContact (Thousand Oaks)
January 2025
Department of Biology, Barnard College at Columbia University, 3009 Broadway, New York, NY 10023, USA.
The composition of eukaryotic membranes reflects a varied but precise amalgam of lipids. The genetic underpinning of how such diversity is achieved or maintained is surprisingly obscure, despite its clear metabolic and pathophysiological impact. The Arv1 protein is represented in all eukaryotes and was initially identified in the model eukaryote as a candidate transporter of lipids from the endoplasmic reticulum.
View Article and Find Full Text PDFPlant Commun
January 2025
Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China. Electronic address:
Steroidal saponins in Paris polyphylla featuring complicated sugar chains exhibit notable biological activities, but the sugar chain biosynthesis is still not fully understood. Here, we identified a 4'-O-rhamnosyltransferase (UGT73DY2) from P. polyphylla, which catalyzes the 4'-O-rhamnosylation of polyphyllins V and VI, producing dioscin and pennogenin 3-O-β-chacotrioside, respectively.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States.
Alzheimer's disease (AD) is the most common form of dementia, marked by progressive brain degeneration and cognitive decline. A major pathological feature of AD is the accumulation of hyperphosphorylated tau (p-tau) in the form of neurofibrillary tangles (NFTs), which leads to neuronal death and neurodegeneration. P-tau also induces endoplasmic reticulum (ER) stress and activates the unfolded protein response, causing inflammation and apoptosis.
View Article and Find Full Text PDFNewly synthesized proteins destined for the secretory pathway are folded and assembled in the endoplasmic reticulum (ER) and then transported to the Golgi apparatus via COPII vesicles, which are normally 60-90 nm. COPII vesicles must accordingly be enlarged to accommodate proteins larger than 90 nm, such as long-chain collagen. Key molecules involved in this enlargement are Tango1 and Tango1-like (Tali), which are transmembrane proteins in the ER encoded by the MIA3 and MIA2 genes, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!