Water-borne polymers are in ever-increasing demand due to their favorable ecological profile compared to traditional solvent-borne polymer systems. Many water-borne polymer particles are stabilized in aqueous media by the incorporation of acid-functional monomers. Due to the large variety of comonomers applied, these water-borne polymers have various superimposed statistical distributions, which make it challenging to obtain in-depth information regarding incorporation of the acidic monomers. For selective analysis of the incorporated acidic monomers, a charge-based non-aqueous capillary electrophoresis (NACE) separation was developed. Two approaches were developed: (i) deprotonation of the acid functionality with an organically soluble strong base and (ii) heteroconjugation of anions of carboxylic acids with incorporated acid functionality. In both approaches, -methylpyrrolidone, as a strong solvent for polymers with a favorable relative permittivity for the presence of dissociated ionic species, was used for the separation. It was shown that anions of carboxylic acids specifically associate with the incorporated acid groups in the polymers, resulting in negatively charged complexes that could be separated based on charge-to-size ratio by NACE. Although both approaches give comparable results with respect to acid distribution for acid-functional polymers, the effective mobility of the deprotonated polymers is roughly double that obtained from the heteroconjugation approach. Unlike the heteroconjugation approach, deprotonation conditions were detrimental to the fused-silica capillary, limiting practical use. Polymers with different chemical compositions, molecular weights, and acid contents were subjected to the CE approaches developed. Polymers with varying molecular weight but similar relative acid monomer content were shown to have similar migration times, which confirms that this approach separates polymers based on charge-to-size ratio.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.1c00311 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Medicine, Huanghe Science and Technology University, Zhengzhou 450061, P. R. China.
Silver nanowire (Ag NW)-based elastic conductors have been considered a promising candidate for key stretchable electrodes in wearable devices. However, the weak interface interaction of Ag NWs and elastic substrates leads to poor durability of electronic devices. For everyday usage, an additional self-healing ability is required to resist scratching and damage.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.
View Article and Find Full Text PDFMacromol Biosci
January 2025
Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering (FEQ), Albert Einstein Avenue, 500, Campinas, São Paulo, 13083-852, Brazil.
Annually, thousands of individuals suffer from skin injuries resulting from trauma, surgeries, or diabetes. Inadequate wound treatment can delay healing and increase the risk of severe infections. In this context, a promising synthetic polymer with potent antimicrobial properties, Poly{2-[(methacryloyloxy)ethyl]trimethylammonium chloride} (PMETAC), is synthesized and crosslinked with N,N'-Methylenebis(acrylamide) (BIS) in the presence of Chitosan (CH), a natural, biocompatible polysaccharide that promotes cell regeneration and provides additional beneficial properties.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China.
Polymer cubosomes (PCs) have garnered significant interest in the field of nanomaterials and nanotechnology due to their unique properties and potential applications. However, the fabrication of PCs remains challenging. Polymerization-induced self-assembly (PISA) is recognized as an efficient method for producing a variety of polymer particles, including PCs.
View Article and Find Full Text PDFExpert Opin Drug Deliv
January 2025
Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Moscow, Russia.
Introduction: The pursuit of linear dosage in pharmacy is essential for achieving consistent therapeutic release and enhancing patient compliance. This review provides a comprehensive summary of zero-order drug delivery systems, with a particular focus on reservoir-based systems emanated from different microfabrication technologies.
Areas Covered: The consideration of recent advances in drug delivery systems is given to encompass the key areas including the importance of achieving a constant drug release rate for therapeutic applications.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!