The metabolic pathways of glycerolipids are well described in cells containing chloroplasts limited by a two-membrane envelope but not in cells containing plastids limited by four membranes, including heterokonts. Fatty acids (FAs) produced in the plastid, palmitic and palmitoleic acids (16:0 and 16:1), are used in the cytosol for the synthesis of glycerolipids via various routes, requiring multiple acyl-Coenzyme A (CoA) synthetases (ACS). Here, we characterized an ACS of the Bubblegum subfamily in the photosynthetic eukaryote Microchloropsis gaditana, an oleaginous heterokont used for the production of lipids for multiple applications. Genome engineering with TALE-N allowed the generation of MgACSBG point mutations, but no knockout was obtained. Point mutations triggered an overall decrease of 16:1 in lipids, a specific increase of unsaturated 18-carbon acyls in phosphatidylcholine and decrease of 20-carbon acyls in the betaine lipid diacylglyceryl-trimethyl-homoserine. The profile of acyl-CoAs highlighted a decrease in 16:1-CoA and 18:3-CoA. Structural modeling supported that mutations affect accessibility of FA to the MgACSBG reaction site. Expression in yeast defective in acyl-CoA biosynthesis further confirmed that point mutations affect ACSBG activity. Altogether, this study supports a critical role of heterokont MgACSBG in the production of 16:1-CoA and 18:3-CoA. In M. gaditana mutants, the excess saturated and monounsaturated FAs were diverted to triacylglycerol, thus suggesting strategies to improve the oil content in this microalga.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8133546PMC
http://dx.doi.org/10.1093/plphys/kiaa110DOI Listing

Publication Analysis

Top Keywords

point mutations
12
microchloropsis gaditana
8
161-coa 183-coa
8
mutations affect
8
characterization bubblegum
4
bubblegum acyl-coa
4
acyl-coa synthetase
4
synthetase microchloropsis
4
gaditana metabolic
4
metabolic pathways
4

Similar Publications

TP53 mutations and MDM2 polymorphisms in breast and ovarian cancers: amelioration by drugs and natural compounds.

Clin Transl Oncol

January 2025

Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.

Globally, breast and ovarian cancers are major health concerns in women and account for significantly high cancer-related mortality rates. Dysregulations and mutations in genes like TP53, BRCA1/2, KRAS and PTEN increase susceptibility towards cancer. Here, we discuss the impact of mutations in the key regulatory gene, TP53 and polymorphisms in its negative regulator MDM2 which are reported to accelerate cancer progression.

View Article and Find Full Text PDF

Differential Inhibition by Cenobamate of Canonical Human Nav1.5 Ion Channels and Several Point Mutants.

Int J Mol Sci

January 2025

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.

Cenobamate is a new and highly effective antiseizure compound used for the treatment of adults with focal onset seizures and particularly for epilepsy resistant to other antiepileptic drugs. It acts on multiple targets, as it is a positive allosteric activator of γ-aminobutyric acid type A (GABA) receptors and an inhibitor of neuronal sodium channels, particularly of the late or persistent Na current. We recently evidenced the inhibitory effects of cenobamate on the peak and late current component of the human cardiac isoform hNav1.

View Article and Find Full Text PDF

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly arrhythmogenic syndrome triggered by stress, primarily linked to gain-of-function point mutations in the cardiac ryanodine receptor (RyR2). Flecainide, as an effective therapy for CPVT, is a known blocker of the surface-membrane Na channel, also affecting the intracellular RyR2 channel. The therapeutic relevance of the flecainide-RyR2 interaction remains controversial, as flecainide blocks only the RyR2 current flowing in the opposite direction to the physiological Ca release from the sarcoplasmic reticulum (SR).

View Article and Find Full Text PDF

Two Novel Mouse Models of Duchenne Muscular Dystrophy with Similar Dmd Exon 51 Frameshift Mutations and Varied Phenotype Severity.

Int J Mol Sci

December 2024

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.

Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disorder caused by an array of mutations in the dystrophin gene, with the most commonly mutated regions being exons 48-55. One of the several existing approaches to treat DMD is gene therapy, based on alternative splicing and mutant exon skipping. Testing of such therapy requires animal models that carry mutations homologous to those found in human patients.

View Article and Find Full Text PDF

Prime editing (PE) is a CRISPR-based tool for genome engineering that can be applied to generate human induced pluripotent stem cell (hiPSC)-based disease models. PE technology safely introduces point mutations, small insertions, and deletions (indels) into the genome. It uses a Cas9-nickase (nCas9) fused to a reverse transcriptase (RT) as an editor and a PE guide RNA (pegRNA), which introduces the desired edit with great precision without creating double-strand breaks (DSBs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!