Objectives: Combretastatin A4 phosphate (CA4P), a vascular disrupting agent (VDA), can cause rapid tumour vessel occlusion. Subsequently, extensive necrosis is discovered in the tumour center, which induces widespread hypoxia and the rise of the α subunit of hypoxia-inducible factor-1 (HIF-1α). The aim of this study was to evaluate the inhibition of hepatocellular carcinoma growth by combining CA4P with HIF-1 α inhibitor and investigate the mechanism of this combination.

Methods: Ginsenoside Rd (Rd) was used in combination with CA4P to estimate the inhibition effect in HepG2 cells and HepG2 xenograft mouse model. The efficacy of anti-tumour was evaluated by tumour growth curve. The protein expression of HIF-1α and PI3K/AKT/mTOR signalling pathway were analysed by western blot.

Key Findings: Combination of CA4P and Rd inhibited HepG2 cell proliferation and induced apoptosis in vivo and in vitro. It also increased the necrotic area of the tumour and delayed the tumour growth. Moreover, Rd down-regulated HIF-1α protein expression by inhibiting PI3K/AKT/mTOR signalling pathway.

Conclusions: Combination of CA4P and Rd had synergistic anti-tumour effects. The mechanism may be related to the inhibition of HIF-1α by PI3K/AKT/mTOR signalling pathway. This strategy provides a new thought for the combinative therapy of VDAs.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jpp/rgaa006DOI Listing

Publication Analysis

Top Keywords

pi3k/akt/mtor signalling
16
hif-1α pi3k/akt/mtor
12
signalling pathway
12
combination ca4p
12
combretastatin phosphate
8
hepatocellular carcinoma
8
tumour growth
8
protein expression
8
hif-1α
5
ca4p
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!