Agricultural production is vital for the stability of the country's economy. Controlling weed infestation through agrochemicals is necessary for increasing crop productivity. However, its excessive use has severe repercussions on the environment (damaging the ecosystem) and the human operators exposed to it. The use of Unmanned Aerial Vehicles (UAVs) has been proposed by several authors in the literature for performing the desired spraying and is considered safer and more precise than the conventional methods. Therefore, the study's objective was to develop an accurate real-time recognition system of spraying areas for UAVs, which is of utmost importance for UAV-based sprayers. A two-step target recognition system was developed by using deep learning for the images collected from a UAV. Agriculture cropland of coriander was considered for building a classifier for recognizing spraying areas. The developed deep learning system achieved an average F1 score of 0.955, while the classifier recognition average computation time was 3.68 ms. The developed deep learning system can be deployed in real-time to UAV-based sprayers for accurate spraying.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8016340PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0249436PLOS

Publication Analysis

Top Keywords

deep learning
16
developed deep
12
real-time recognition
8
recognition system
8
spraying areas
8
uav-based sprayers
8
learning system
8
spraying
5
recognition spraying
4
spraying area
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!