Natural products are biosynthesized from a limited pool of starting materials via pathways that obey the same chemical logic as textbook organic reactions. Given the structure of a natural product, it is therefore often possible to predict its likely biosynthesis. Although biosynthesis mainly occurs in the highly specific chemical environments of enzymes, the field of biomimetic total synthesis attempts to replicate predisposed pathways using chemical reagents.We have followed several guidelines in our biomimetic approach to total synthesis. The overarching aim is to construct the same skeletal C-C and C-heteroatom bonds and in the same order as our biosynthetic hypothesis. In order to explore the innate reactivity of (bio)synthetic intermediates, the use of protecting groups is avoided or at least minimized. The key step, which is usually a cascade reaction, should be predisposed to selectively generate molecular complexity under substrate control (e.g., cycloadditions, radical cyclizations, carbocation rearrangements). In general, simple reagents and mild conditions are used; many of the total syntheses presented in this Account could be achieved using pre-1980s methodology. We have focused almost exclusively on the synthesis of meroterpenoids, that is, natural products of mixed terpene and aromatic polyketide origin, using commercially available terpenes and electron-rich aromatic compounds as starting materials. Finally, all of the syntheses in this Account involve a dearomatization step as a means to trigger a cascade reaction or to construct stereochemical complexity from a planar, aromatic intermediate.A biomimetic strategy can offer several advantages to a total synthesis project. Most obviously, successful biomimetic syntheses are usually concise and efficient, naturally adhering to the atom, step, and redox economies of synthesis. For example, in this Account, we describe a four-step synthesis of garcibracteatone and a three-step synthesis of nyingchinoid A. It is difficult to imagine shorter, non-biomimetic syntheses of these intricate molecules. Furthermore, biomimetic synthesis gives insight into biosynthesis by revealing the chemical relationships between biosynthetic intermediates. Access to these natural substrates allows collaboration with biochemists to help uncover the function of newly discovered enzymes and elucidate biosynthetic pathways, as demonstrated in our work on the napyradiomycin family. Third, by making biosynthetic connections between natural products, we can sometimes highlight incorrect structural assignments, and herein we discuss structure revisions of siphonodictyal B, rasumatranin D, and furoerioaustralasine. Last, biomimetic synthesis motivates the prediction of "undiscovered natural products" (i.e., missing links in biosynthesis), which inspired the isolation of prenylbruceol A and isobruceol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.accounts.1c00019 | DOI Listing |
Int J Rheum Dis
January 2025
Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
Objective: Serum uric acid (SUA) may play positive roles in diseases associated with oxidative stress, such as osteoporosis (OP). Nevertheless, the specific impact of SUA levels on both bone mineral density (BMD) and the risk of OP remains uncertain. Considering such information crucial for clinicians when making decisions about urate-lowering therapy (ULT), we sought to fill this gap by conducting dose-response meta-analyses.
View Article and Find Full Text PDFFront Immunol
January 2025
Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
Pembrolizumab (an anti-PD1 antibody) alone or combined with chemotherapy represented the standard of care for advanced non-oncogene addicted non-small cell lung cancer (NSCLC) patients. These therapies induced early modifications of the immune response impacting the clinical outcome. Identifying early changes in the immune system was critical to directing the therapeutic choice and improving the clinical outcome.
View Article and Find Full Text PDFFront Public Health
January 2025
Department of Pediatric Metabolism and Nutrition, Gazi University, Ankara, Türkiye.
Introduction: Circadian Locomotor Output Cycles Kaput (CLOCK) is one of the transcription factors from the positive end of the molecular clock and regulates biological rhythm in mammals. Studies have shown that genetic variations in the CLOCK genes are associated with chronotype, sleep patterns, obesity, dietary energy, and nutrient consumption. Although interest in the field of chrononutrition continues to increase, investigations into the temporal aspects of dietary habits in adolescents are notably limited.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
Local immunomodulation with nanoparticles (NPs) and focused ultrasound (FUS) is recognized for triggering anti-tumor immunity. However, the impact of these tumor immunomodulations on sex-specific microbiome diversity at distant sites and their correlation with therapeutic effectiveness remains unknown. Here, we conducted local intratumoral therapy using immunogenic cell death-enhancing Calreticulin-Nanoparticles (CRT-NPs) and FUS in male and female mice.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Internal Medicine III, School of Medicine and Health, Technical University of Munich, Munich, Germany.
Despite recent advances in the targeted therapy of AML, the disease continues to have a poor prognosis. Allogeneic hematopoietic stem cell transplantation (alloSCT) remains to be the curative therapy option for fit patients with high-risk disease. Especially patients with relapsed or refractory (r/r) AML continue to have poor outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!