As model-informed drug development becomes an integral part of modern approaches to the discovery of new therapeutic entities and showing their safety and effectiveness, modalities of incorporating the paradigm into widespread practice require a revisit. Traditionally, modeling and simulation (M&S) have been performed by specialized teams who create bespoke models for each case and have reservations about letting modeling be done by the greater mass of scientists engaged in various stages of drug development. An analogy can be drawn between M&S and automobiles: typical drivers of ordinary cars use them for daily tasks, such as going from point A to B whereas specialized Formula 1 drivers using bespoke individually made cars to test the latest technologies. The reliability and robustness of ordinary cars for the first group requires elements related to quality and endurance that are very different from those applicable to any Formula 1 car supported by a large team of engineers. In this commentary, we frame and analyze the problems concerning the structure and setup of various M&S tools, and their pros and cons. We demonstrate that many misconceptions have precluded having an open discussion on what each modality of M&S tools strives to achieve, and we provide data and evidence that support the move of M&S to main stream use by many, as opposed to specialized usage by few. Parallels are drawn in many other areas involving laboratory instrumentation, statistical analyses, and so on.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8129708 | PMC |
http://dx.doi.org/10.1002/psp4.12615 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!