AI Article Synopsis

Article Abstract

Introduction: Drug resistance and relapse of acute myeloid leukemia (AML) is still an important problem in the treatment of leukemia. Leukemia outbreak causes severe hypoxia in bone marrow (BM), remolding BM microenvironment (niche), and transforming hematopoietic stem cell (HSC) niche into leukemia stem cell (LSC) niche. AML cells and the microenvironment usually conduct "cross-talk" through cytokines to anchor resistant AML cells into LSC niche, thus supporting their survival. Therefore, this study was aimed to investigate the role of CXCL2 in the hypoxic AML niche.

Methods: AML hypoxic niche was simulated by hypoxic culture of THP-1 and HL-60 cells in vitro, thus to study the effects of CXCL2 on the proliferation and migration of AML cells. The expression of hypoxia-inducible factor-1α (HIF-1α) and the activation of survival-related kinases such as PIM2 and mTOR under CoCl -simulated hypoxic conditions were detected. The correlation between CXCL2 and the prognosis of AML with big data was verified.

Results: (a) CXCL2 promoted the proliferation and migration of AML cells. (b) CXCL2 up-regulated the expression of PIM2 by enhancing the transcriptional activity of HIF-1α. (c) CXCL2 activated mTOR in AML cells. (d) CXCL2 was associated with poor prognosis in AML.

Conclusion: CXCL2 promotes survival, migration, and drug resistance pathway of AML cells in hypoxia and is associated with poor prognosis in AML. Therefore, CXCL2 can be considered as an important factor in promoting the development of AML cells in hypoxia.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ijlh.13512DOI Listing

Publication Analysis

Top Keywords

aml cells
28
cells hypoxia
12
aml
12
cxcl2
10
cells
9
acute myeloid
8
myeloid leukemia
8
drug resistance
8
stem cell
8
lsc niche
8

Similar Publications

Benzene-induced hematotoxicity enhances the self-renewal ability of HSPCs in Mll-Af9 mice.

Toxicology

January 2025

Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China; China State Key Laboratory of Trauma, Burn and Combined Injury, China. Electronic address:

Patients with benzene-induced leukemia undergo a continuous transformation from myelosuppression to malignant proliferation. However, the underlying mechanisms in this process remain unknown. Our previous studies have shown that the pathways involved in self-renewal capacity of bone marrow (BM) cells in Mll-Af9 mice exposed to benzene for life are significantly activated after severe blood toxicity.

View Article and Find Full Text PDF

The representation of driver mutations in preleukemic hematopoietic stem cells (pHSCs) provides a window into the somatic evolution that precedes acute myeloid leukemia (AML). Here, we isolate pHSCs from the bone marrow of 16 patients diagnosed with AML and perform single-cell DNA sequencing on thousands of cells to reconstruct phylogenetic trees of the major driver clones in each patient. We develop a computational framework that can infer levels of positive selection operating during preleukemic evolution from the statistical properties of these phylogenetic trees.

View Article and Find Full Text PDF

Stemness-associated cell states are linked to chemotherapy resistance in AML. We uncovered a direct mechanistic link between expression of the stem cell transcription factor GATA2 and drug resistance. The GATA-binding protein 2 (GATA2) plays a central role in blood stem cell generation and maintenance.

View Article and Find Full Text PDF

Bispecific Aptamer-Drug Conjugates Selectively Eliminate Malignant Hematologic Cells for Treating Acute Myeloid Leukemia.

Langmuir

January 2025

Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.

Surface antigen-directed immunotherapy is a curative treatment modality for acute myeloid leukemia (AML) that is characterized by the abundance and stability expression of surface antigens. However, current surface antigen-directed immunotherapies have shown poor outcomes and undesirable mortality rates in treating AML patients, primarily due to acquired resistance that arises from using single-target therapies to address the heterogeneous expression of surface antigens. Hence, in order to improve the efficacy of antigen-specific therapies for treating AML, we designed a bispecific aptamer-drug conjugate.

View Article and Find Full Text PDF

FLT3 is genetically essential for ITD-mutated leukemic stem cells but dispensable for human hematopoietic stem cells.

Blood

January 2025

1Princess Margaret Cancer Centre, University Health Network; Toronto, ON M5G 1L7, Canada 14Department of Molecular Genetics, University of Toronto; Toronto, ON, Canada, Canada.

Leukemic stem cells (LSCs) fuel acute myeloid leukemia (AML) growth and relapse, but therapies tailored towards eradicating LSCs without harming normal hematopoietic stem cells (HSCs) are lacking. FLT3 is considered an important therapeutic target due to frequent mutation in AML and association with relapse. However, there has been limited clinical success with FLT3 drug targeting, suggesting either that FLT3 is not a vulnerability in LSC, or that more potent inhibition is required, a scenario where HSC toxicity could become limiting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!