Kinetic Microscale Thermophoresis for Simultaneous Measurement of Binding Affinity and Kinetics.

Angew Chem Int Ed Engl

Systems Biophysics, Department of Physics, Ludwig-Maximilians-Universität München and Center for NanoScience, Amalienstasse 54, 80799, München, Germany.

Published: June 2021

Microscale thermophoresis (MST) is a versatile technique to measure binding affinities of binder-ligand systems, based on the directional movement of molecules in a temperature gradient. We extended MST to measure binding kinetics as well as binding affinity in a single experiment by increasing the thermal dissipation of the sample. The kinetic relaxation fingerprints were derived from the fluorescence changes during thermodynamic re-equilibration of the sample after local heating. Using this method, we measured DNA hybridization on-rates and off-rates in the range 10 -10  m  s and 10 -10  s , respectively. We observed the expected exponential dependence of the DNA hybridization off-rates on salt concentration, strand length and inverse temperature. The measured on-rates showed a linear dependence on salt concentration and weak dependence on strand length and temperature. For biomolecular interactions with large enthalpic contributions, the kinetic MST technique offers a robust, cost-effective and immobilization-free determination of kinetic rates and binding affinity simultaneously, even in crowded solutions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8251828PMC
http://dx.doi.org/10.1002/anie.202101261DOI Listing

Publication Analysis

Top Keywords

binding affinity
12
microscale thermophoresis
8
measure binding
8
dna hybridization
8
salt concentration
8
strand length
8
binding
5
kinetic
4
kinetic microscale
4
thermophoresis simultaneous
4

Similar Publications

Disruptive multiple cell death pathways of bisphenol-A.

Toxicol Mech Methods

January 2025

Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India.

Endocrine-disrupting chemicals (EDCs) significantly contribute to health issues by interfering with hormonal functions. Bisphenol A (BPA), a prominent EDC, is extensively utilized as a monomer and plasticizer in producing polycarbonate plastic and epoxy resins, making it one of the highest-demanded chemicals in commercial use. This is the major component used in plastic products, including bottles, containers, storage items, and food serving ware.

View Article and Find Full Text PDF

Snakebite envenoming remains a devastating and neglected tropical disease, claiming over 100,000 lives annually and causing severe complications and long-lasting disabilities for many more. Three-finger toxins (3FTx) are highly toxic components of elapid snake venoms that can cause diverse pathologies, including severe tissue damage and inhibition of nicotinic acetylcholine receptors, resulting in life-threatening neurotoxicity. At present, the only available treatments for snakebites consist of polyclonal antibodies derived from the plasma of immunized animals, which have high cost and limited efficacy against 3FTxs.

View Article and Find Full Text PDF

The transcription factor p53 is exquisitely sensitive and selective to a broad variety of cellular environments. Several studies have reported that oxidative stress weakens the p53-DNA binding affinity for certain promoters depending on the oxidation mechanism. Despite this body of work, the precise mechanisms by which the physiologically relevant DNA-p53 tetramer complex senses cellular stresses caused by HO are still unknown.

View Article and Find Full Text PDF

Background And Purpose: The antiepileptic drug ethosuximide (ETX) suppresses epileptiform activity in a mouse model of GNB1 syndrome, caused by mutations in Gβ protein, likely through the inhibition of G-protein gated K (GIRK) channels. Here, we investigated the mechanism of ETX inhibition (block) of different GIRKs.

Experimental Approach: We studied ETX inhibition of GIRK channels expressed in Xenopus oocytes with or without their physiological activator, the G protein subunit dimer Gβγ.

View Article and Find Full Text PDF

Background: Extracellular signal-regulated kinase 1 (ERK1) belongs to mitogen-activated protein kinases, which are essential for memory formation, cognitive function, and synaptic plasticity. During Alzheimer's disease (AD), ERK1 phosphorylates tau at 15 phosphorylation sites, leading to the formation of neurofibrillary tangles. The overactivation of ERK1 in microglia promotes the release of pro-inflammatory cytokines, which results in neuroinflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!