Background: There is an established bidirectional relationship between mental and heart health in later life but the link between wish to die (WTD) and cardiovascular mortality is less well-defined.

Methods: This is a longitudinal study examining the association between WTD and mortality over 9-year follow-up in a large population-representative sample of older adults. Individual-level survey data was linked to official death registration data, divided into cardiovascular and noncardiovascular causes. WTD was defined as answering affirmatively when asked 'In the last month, have you felt that you would rather be dead?' Regression models were used to obtain hazard ratios for the association between WTD at Wave 1 and mortality. Kaplan-Meier plots were used to compare survival across groups.

Results: Just over 3% (275/8124) of participants reported WTD. Mortality data was available for 9% of participants (755/8124). WTD was significantly associated with all-cause mortality, with a hazard ratio of 1.41 (95% confidence interval [CI]: 1.00-1.99). Findings were attenuated and no longer significant after excluding participants with heart disease or depression/anxiety/other psychiatric illness. WTD was significantly associated with cardiovascular mortality (hazard ratio: 2.14 [95% CI: 1.21-3.78]), even after excluding participants with depression/anxiety/other illnesses but not heart disease. WTD was not associated with an increased risk of death due to non-cardiovascular causes.

Conclusions: Older people who report a wish to die have double the risk of death from cardiovascular disease in the following 9 years, even when those with depression, anxiety or other mental health problems are excluded.

Download full-text PDF

Source
http://dx.doi.org/10.1002/gps.5550DOI Listing

Publication Analysis

Top Keywords

cardiovascular mortality
12
wtd associated
12
associated cardiovascular
8
wtd
8
association wtd
8
wtd mortality
8
mortality hazard
8
hazard ratio
8
excluding participants
8
heart disease
8

Similar Publications

Cardiac acetylcholinesterase and butyrylcholinesterase have distinct localization and function.

Am J Physiol Heart Circ Physiol

January 2025

Comenius University Bratislava, Faculty of Pharmacy, Department of Pharmacology and Toxicology, Bratislava, Slovakia.

Cholinesterase (ChE) inhibitors are under consideration to be used in the treatment of cardiovascular pathologies. A prerequisite to advancing ChE inhibitors into the clinic is their thorough characterization in the heart. The aim here was to provide a detailed analysis of cardiac ChE to understand their molecular composition, localization, and physiological functions.

View Article and Find Full Text PDF

Objectives: In this study, the capacity of End-tidal carbon dioxide (EtCO2) levels to predict the risk of major cardiovascular events (MACE) in patients diagnosed with acute coronary syndrome and the relationship between risk scoring systems (TIMI, GRACE, HEART) and EtCO2 values were examined.

Methods: EtCO2 values of the patients in the study were measured with a capnography device. Each patient's MACE status was recorded.

View Article and Find Full Text PDF

Importance: Disease characteristics of genetically mediated coronary artery disease (CAD) on coronary angiography and the association of genomic risk with outcomes after coronary angiography are not well understood.

Objective: To assess the angiographic characteristics and risk of post-coronary angiography outcomes of patients with genomic drivers of CAD: familial hypercholesterolemia (FH), high polygenic risk score (PRS), and clonal hematopoiesis of indeterminate potential (CHIP).

Design, Setting, And Participants: A retrospective cohort study of 3518 Mass General Brigham Biobank participants with genomic information who underwent coronary angiography was conducted between July 18, 2000, and August 1, 2023.

View Article and Find Full Text PDF

Endovascular versus Best Medical Treatment for Acute Carotid Occlusion BelOw Circle of Willis (ACOBOW): The ACOBOW Study.

Radiology

January 2025

From the Dept of Diagnostic and Interventional Neuroradiology, Univ Medical Ctr Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany (L.M., G.B., P.S., J.F., C.P.S.); Dept of Diagnostic and Interventional Neuroradiology, Hosp Bremen-Mitte, Bremen, Germany (M.A., P.P.); Interventional Neuroradiology Section, Dept of Radiology, Donostia Univ Hosp, Donostia-San Sebastián, Spain (Á.L., J.Á.L.); Clinic for Radiology, Section for Interventional Radiology, Univ of Münster and Univ Hosp Münster, Münster, Germany (W.S., H.K., C.P.S.); Dept of Neuroradiology, Westpfalz-Klinikum, Kaiserslautern, Germany (W.N.); Dept of Neuroradiology, Otto-von-Guericke-Universitätsklinikum Magdeburg, Magdeburg, Germany (D.B., M.T.); Inst for Diagnostic and Interventional Radiology and Neuroradiology, Univ Hosp Essen, Essen, Germany (H.S., C.D.); Dept of Neuroradiology, Univ of Cologne, Cologne, Germany (C.K., C.Z.); Dept of Neuroradiology, Univ Hosp Aachen, Aachen, Germany (C.W., M. Möhlenbruch); Dept of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical Univ Munich, Munich, Germany (M.R.H.P., C.M.); Inst of Neuroradiology, Univ Hosps, LMU Munich, Munich, Germany (H.Z.); Dept of Diagnostic and Interventional Neuroradiology, Univ Medical Ctr Goettingen, Goettingen, Germany (M. Ernst, A.J.); Interventional Neuroradiology, Dept of Radiology, Hosp Clínico San Carlos, Madrid, Spain (M.M.G., C.P.G.); Dept of Neuroradiology, Hosp Universitario La Paz, Madrid, Spain (P.N., A.F.P.); Div of Neurology, Dept of Medicine (L.Y., B.T.), and Div of Interventional Radiology, Dept of Diagnostic Imaging (A.G.), National Univ Health System, Singapore; Yong Loo Lin School of Medicine, National Univ of Singapore, Singapore (L.Y., B.T., A.G.); Inst of Neuroradiology, Charité Universitätsmedizin Berlin, Berlin, Germany (E.S., M. Miszczuk); Dept of Neuroradiology, Clinic and Policlinic of Radiology, Univ Hosp Halle/Saale, Halle, Germany (S.S.); Dept of Radiology and Neuroradiology, Stadtspital Zürich, Zürich, Switzerland (P.S.); Dept of Diagnostic and Interventional Neuroradiology, Univ Hosp Basel, Basel, Switzerland (P.S., M.P.); Depts of Interventional Neuroradiology (J.Z.P.) and Neurology (G.P.), Hosp Clínico Universitario Virgen de la Arrixaca, Murcia, Spain; Dept of Neuroradiology, Karolinska Univ Hosp and Dept of Clinical Neuroscience, Karolinska Inst, Stockholm, Sweden (F.A., T.A.); Dept of Medical Imaging, AZ Groeninge, Kortrijk, Belgium (T.A.); Dept of Radiology, Comenius Univ's Jessenius Faculty of Medicine and Univ Hosp, Martin, Slovakia (K.Z.); Dept of Radiology, Aretaieion Univ Hosp, National and Kapodistrian Univ of Athens, Athens, Greece (P.P.); Dept of Neuroradiology, Univ Hosp Marburg, Marburg, Germany (A.K.); Dept of Neuroradiology, Univ Hosp of Bonn, Bonn, Germany (F.D.); and Dept of Neuroradiology, Alfried Krupp Krankenhaus, Essen, Germany (M. Elsharkawy).

Background Symptomatic acute occlusions of the internal carotid artery (ICA) below the circle of Willis can cause a variety of stroke symptoms, even if the major intracranial cerebral arteries remain patent; however, outcome and safety data are limited. Purpose To compare treatment effects and procedural safety of endovascular treatment (EVT) and best medical treatment (BMT) in patients with symptomatic acute occlusions of the ICA below the circle of Willis. Materials and Methods This retrospective, multicenter cohort study from 22 comprehensive stroke centers in Europe and Asia includes patients treated between January 1, 2008, and December 31, 2022.

View Article and Find Full Text PDF

Aims: Left ventricular (LV) diastolic dysfunction and heart failure with preserved ejection fraction (HFpEF) are common cardiac complications of patients with systemic sclerosis (SSc). Exercise stress echocardiography is often used in symptomatic patients with SSc to detect abnormal increases in pulmonary pressures during exercise, but the pathophysiologic and prognostic significance of exercise stress echocardiography to assess the presence of HFpEF in these patients is unclear.

Methods And Results: Patients with SSc (n=140) underwent ergometry exercise stress echocardiography with simultaneous expired gas analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!