RNA folds into secondary structures that can serve in understanding various RNA functions (Weeks KM. Curr Opin Struct Biol 20(3):295-304, 2010). Chemical probing is a method that enables the characterization of RNA secondary structures using chemical reagents that specifically modify RNA nucleotides that are located in single-stranded areas. In our protocol, we used Dimethyl Sulfate (DMS) and Cyclohexyl-3-(2-Morpholinoethyl) Carbodiimide metho-p-Toluene sulfonate (CMCT) that are both base-specific modifying reagents (Behm-Ansmant I, et al. J Nucleic Acids 2011:408053, 2011). These modifications are mapped by primer extension arrests using 5' fluorescently labeled primers. In this protocol, we show a comprehensive method to identify RNA secondary structures in vitro using fluorescently labeled oligos. To demonstrate the efficiency of the method, we give an example of a structure we have designed which corresponds to a part of the 5'-UTR regulatory element called Translation Inhibitory Element (TIE) from Hox a3 mRNA (Xue S, et al. Nature 517(7532):33-38, 2015).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1386-3_18 | DOI Listing |
Sci Rep
January 2025
Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, No. 950 Donghai Street, Fengze District, Quanzhou, 362000, Fujian, China.
The significance of ALKBH5 in erasing mRNA methylation in mRNA biogenesis, decay, and translation control has emerged as a prominent research focus. Additionally, ALKBH5 is associated with the development of numerous human cancers. However, it remains unclear whether ALKBH5 regulates the growth and metastasis of papillary thyroid carcinoma (PTC).
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
July 2024
Southern Hospital affiliated with Shenzhen University, Shenzhen Guangdong 518001, China.
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype with poor prognosis. RNA alternative splicing dysregulation plays a critical role in the initiation and progression of TNBC. This article systematically introduces the basic process of RNA splicing and then focuses on reviewing the aberrant alternative splicing events and their biological effects in TNBC: 1) Multiple splicing-related factors promote tumor cell proliferation and mediate chemotherapy resistance by regulating the alternative splicing of genes involved in cell survival and drug response; 2) dysregulation of splicing regulatory networks leads to altered splicing of multiple metastasis-related genes, promoting tumor invasion and metastasis; 3) aberrant alternative splicing events participate in tumor progression by affecting the expression of DNA damage repair genes; 4) dysregulation of alternative splicing is also involved in the regulation of tumor immune evasion and stem cell properties.
View Article and Find Full Text PDFrRNA-derived fragments (rRFs) are a class of emerging post-transcriptional regulators of gene expression likely binding to the transcripts of target genes. However, the lack of knowledge about such targets hinders our understanding of rRF functions or binding mechanisms. The paucity of resources supporting the identification of the targets of rRFs creates a bottleneck in the fast-developing field.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China. Electronic address:
The diversity of host plants is an important reason for the global spread of Hyphantria cunea. However, no studies have explored the role of the antioxidant defense system with catalase (CAT) as the core at the molecular level in the adaptation of the H. cunea to host plant secondary metabolites.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Computational Structural Biology Lab, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
MicroRNAs (miRNA) are categorized as short endogenous non-coding RNAs, which have a significant role in post-transcriptional gene regulation. Identifying new animal precursor miRNA (pre-miRNA) and miRNA is crucial to understand the role of miRNAs in various biological processes including the development of diseases. The present study focuses on the development of a Light Gradient Boost (LGB) based method for the classification of animal pre-miRNAs using various sequence and secondary structural features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!