Sodium-glucose co-transporter 2 inhibitor empagliflozin inhibits the cardiac Na+/H+ exchanger 1: persistent inhibition under various experimental conditions.

Cardiovasc Res

Amsterdam UMC, University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.

Published: December 2021

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8683702PMC
http://dx.doi.org/10.1093/cvr/cvab129DOI Listing

Publication Analysis

Top Keywords

sodium-glucose co-transporter
4
co-transporter inhibitor
4
inhibitor empagliflozin
4
empagliflozin inhibits
4
inhibits cardiac
4
cardiac na+/h+
4
na+/h+ exchanger
4
exchanger persistent
4
persistent inhibition
4
inhibition experimental
4

Similar Publications

Introduction: The progression of diabetes status in post-stroke patients remains under-investigated, particularly regarding new treatments for type II diabetes mellitus (DM II), like glucagon-like peptide 1 receptor agonists (GLP-1-RA) and sodium-glucose co-transporter-2 (SGLT-2) inhibitors, which have not been studied in the post-stroke setting.

Patients And Methods: Eight hundred eighty-four consecutive ischemic stroke patients recruited to our prospective STROKE-CARD Registry were assessed concerning their glycemic status at baseline (normoglycemia, prediabetes, DM II) and change over time within 1 year follow-up. Multivariate logistic regression was performed to identify factors associated with transitioning from normoglycemia to prediabetes or DM II.

View Article and Find Full Text PDF

Renal ischemia-reperfusion injury (IRI) is a common clinical condition that currently lacks effective treatment options. Inhibitors targeting the sodium-glucose co-transporter-2 (SGLT-2), recognized for their role in managing hyperglycemia, have demonstrated efficacy in enhancing the health outcomes for diabetic patients grappling with chronic kidney disease. Nevertheless, the precise impact of SGLT-2 inhibitors on renal ischemia-reperfusion injury (IRI) and the corresponding transcriptomic alterations remain to be elucidated.

View Article and Find Full Text PDF

Renal Tubule-Specific Angiotensinogen Deletion Attenuates SGLT2 Expression and Ameliorates Diabetic Kidney Disease in Murine Models of Type 1 Diabetes.

Diabetes

January 2025

Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC Canada H2X 0A9.

The role of the intrarenal renin-angiotensin system (iRAS) in diabetic kidney disease (DKD) progression remains unclear. In this study, we generated mice with renal tubule-specific deletion of angiotensinogen (Agt; RT-Agt-/-) in both Akita and streptozotocin (STZ)-induced mouse model of diabetes. Both Akita RT-Agt-/- and STZ-RT-Agt-/- mice exhibited significant attenuation of glomerular hyperfiltration, urinary albumin/creatinine ratio, glomerulomegaly and tubular injury.

View Article and Find Full Text PDF

SGLT2 expression in human vasculature and heart correlates with low-grade inflammation and causes eNOS-NO/ROS imbalance.

Cardiovasc Res

December 2024

Translational Cardiovascular Medicine UR 3074, FMTS, 1 rue Eugène Boeckel, Strasbourg 67084, France.

Aims: Sodium-glucose co-transporter 2 inhibitors (SGLT2i) show a cardioprotective effect in heart failure and myocardial infarction, pathologies often associated with low-grade inflammation. This cross-sectional study aims to investigate whether low-grade inflammation regulates SGLT2 expression and function in human vasculature, heart, and endothelial cells (ECs).

Methods And Results: Human internal thoracic artery (ITA), left ventricle (LV) specimens, and cultured porcine coronary artery ECs were used.

View Article and Find Full Text PDF

Immunolocalization of sodium-dependent glucose co-transporter 1 and sodium-dependent glucose co-transporter 2 in chicken's (Gallus gallus domesticus) kidneys.

Pol J Vet Sci

September 2024

Chair of Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi Str.62, Tartu 51006, Estonia.

In homeostasis, which plays an important role in the proper functioning and maintenance of the internal functioning of the body, kidneys play a key role in being responsible for the proper homeostasis of glucose. Among glucose transporters, sodium-dependent glucose co-transporters (SGLTs) have a major role in the kidney's ability to reabsorb glucose. Although the localization of these transporters has been extensively studied in mammals, there are still gaps in knowledge of the localization of SGLTs in birds of different age groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!