Electronic devices with high heat flux are currently facing heat dissipation problems. Heat pipes can be used as efficient heat spreaders to address this critical problem. However, as electronic devices become smaller, the space for heat dissipation is becoming ever so limited; hence, ultrathin heat pipes are desired. This study proposes a biomimetic copper forest wick for an ultrathin heat pipe (UTHP). It is made by a simple one-step electrodeposition process and appears as a natural forest structure with abundant Ω-like grooves. Capillary rise tests with ethanol were performed to characterize the capillary force of the wick structure. Compared to traditional sintered particles, this wick structure has a much higher capillary performance parameter, /. The biomimetic copper forest wick was used to fabricate a 0.6 mm thick UTHP. The UTHP was tested at different filling ratios; the optimum filling ratio was found to be about 71%. At a heating power of 6 W, the temperature difference between the condenser and evaporator was only 1.2 °C, with an effective thermal conductivity, , up to 1.26 × 10 W m K.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.0c09961DOI Listing

Publication Analysis

Top Keywords

biomimetic copper
12
copper forest
12
forest wick
12
ultrathin heat
12
thermal conductivity
8
heat
8
heat pipe
8
electronic devices
8
heat dissipation
8
heat pipes
8

Similar Publications

This study aimed to investigate the regulation of fibroblast phenotypes by MSCs delivering copper sulfide (CuS) nanoparticles (NPs) loaded with CDKN1A plasmids and their role in cartilage repair during osteoarthritis (OA). Single-cell RNA sequencing data from the GEO database were analyzed to identify subpopulations within the OA immune microenvironment. Quality control, filtering, PCA dimensionality reduction, and tSNE clustering were performed to obtain detailed cell subtypes.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is characterized by pronounced immune escape and resistance to chemotherapy-induced apoptosis. Preliminary investigations revealed a marked overexpression of gasdermin E (GSDME) in GBM. Notably, cisplatin (CDDP) demonstrated a capacity of inducing pyroptosis by activating caspase-3 to cleave GSDME, coupled with the release of proinflammatory factors, indicating the potential as a viable approach of inducing anti-tumor immune activation.

View Article and Find Full Text PDF

Active site-inspired multicopper laccase-like nanozymes for detection of phenolic and catecholamine compounds.

Anal Chim Acta

January 2025

School of Medical Devices, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China. Electronic address:

Phenolic compounds are typical organic pollutants which cause severe human health problems due to their teratogenesis, carcinogenesis, neurotoxicity, immunotoxicity and endocrine disruption. Natural laccase is a multicopper oxidase existing in bacteria, plants, and insects, which can accelerate the transformation of phenolic compounds to their less hazardous oxidized products under mild conditions without harmful byproducts. Despite eco-environmentally friendly property of laccase, it still faces constraints of widespread application attribute to its high cost, complex preparation, and vulnerability.

View Article and Find Full Text PDF

Impact of Copper(II) and Silver(I) Complexes Containing 1,10-Phenanthroline-5,6-dione on Cellular and Virulence Aspects of Scedosporium apiospermum.

Curr Top Med Chem

January 2025

Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.

Background: Scedosporium apiospermum is a multidrug-resistant filamentous fungus that causes localized and disseminated diseases. Our group has previously described that metalbased complexes containing copper(II) or silver(I) ions complexed with 1,10-phenanthroline-5,6- dione (phendione) inhibited the viability of S. apiospermum conidial cells.

View Article and Find Full Text PDF

Maintaining tightly copper homeostasis is crucial for the survival of all living organisms, in particular microorganisms like bacteria. They have evolved a number of proteins to capture, transport and deliver Cu(I), while avoiding Fenton-like reactions. Some Cu proteins exhibit methionine-rich (Met-rich) domains, whose role remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!