Electronic devices with high heat flux are currently facing heat dissipation problems. Heat pipes can be used as efficient heat spreaders to address this critical problem. However, as electronic devices become smaller, the space for heat dissipation is becoming ever so limited; hence, ultrathin heat pipes are desired. This study proposes a biomimetic copper forest wick for an ultrathin heat pipe (UTHP). It is made by a simple one-step electrodeposition process and appears as a natural forest structure with abundant Ω-like grooves. Capillary rise tests with ethanol were performed to characterize the capillary force of the wick structure. Compared to traditional sintered particles, this wick structure has a much higher capillary performance parameter, /. The biomimetic copper forest wick was used to fabricate a 0.6 mm thick UTHP. The UTHP was tested at different filling ratios; the optimum filling ratio was found to be about 71%. At a heating power of 6 W, the temperature difference between the condenser and evaporator was only 1.2 °C, with an effective thermal conductivity, , up to 1.26 × 10 W m K.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.0c09961 | DOI Listing |
Am J Physiol Cell Physiol
January 2025
Division of Orthopedics, The third affiliated hospital of Sun Yat-sen university, Guangzhou 510530, China.
This study aimed to investigate the regulation of fibroblast phenotypes by MSCs delivering copper sulfide (CuS) nanoparticles (NPs) loaded with CDKN1A plasmids and their role in cartilage repair during osteoarthritis (OA). Single-cell RNA sequencing data from the GEO database were analyzed to identify subpopulations within the OA immune microenvironment. Quality control, filtering, PCA dimensionality reduction, and tSNE clustering were performed to obtain detailed cell subtypes.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Pharmacy The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
Glioblastoma multiforme (GBM) is characterized by pronounced immune escape and resistance to chemotherapy-induced apoptosis. Preliminary investigations revealed a marked overexpression of gasdermin E (GSDME) in GBM. Notably, cisplatin (CDDP) demonstrated a capacity of inducing pyroptosis by activating caspase-3 to cleave GSDME, coupled with the release of proinflammatory factors, indicating the potential as a viable approach of inducing anti-tumor immune activation.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
School of Medical Devices, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China. Electronic address:
Phenolic compounds are typical organic pollutants which cause severe human health problems due to their teratogenesis, carcinogenesis, neurotoxicity, immunotoxicity and endocrine disruption. Natural laccase is a multicopper oxidase existing in bacteria, plants, and insects, which can accelerate the transformation of phenolic compounds to their less hazardous oxidized products under mild conditions without harmful byproducts. Despite eco-environmentally friendly property of laccase, it still faces constraints of widespread application attribute to its high cost, complex preparation, and vulnerability.
View Article and Find Full Text PDFCurr Top Med Chem
January 2025
Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
Background: Scedosporium apiospermum is a multidrug-resistant filamentous fungus that causes localized and disseminated diseases. Our group has previously described that metalbased complexes containing copper(II) or silver(I) ions complexed with 1,10-phenanthroline-5,6- dione (phendione) inhibited the viability of S. apiospermum conidial cells.
View Article and Find Full Text PDFChemistry
December 2024
Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000, Grenoble, France.
Maintaining tightly copper homeostasis is crucial for the survival of all living organisms, in particular microorganisms like bacteria. They have evolved a number of proteins to capture, transport and deliver Cu(I), while avoiding Fenton-like reactions. Some Cu proteins exhibit methionine-rich (Met-rich) domains, whose role remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!