The use of human cell lines and primary cells as in vitro models represents a valuable approach to study cellular responses to infection. However, with the advent of new molecular technologies and tools available, there is a growing need to develop more physiologically relevant systems to overcome cell line model limitations and better mimic human disease. Since the discovery of human stem cells, its use has revolutionised the development of in vitro models. This is because after differentiation, these cells have the potential to reflect in vivo cell phenotypes and allow for probing questions in numerous fields of the biological sciences. Moreover, the possibility to combine the advantages of stem cell-derived cell types with genome editing technologies and engineered 3D microenvironments, provides enormous potential for producing in vitro systems to investigate cellular responses to infection that are both relevant and predictive. Here, we discuss recent advances in the use of human stem cells to model host-pathogen interactions, highlighting emerging technologies in the field of stem cell biology that can be exploited to investigate the fundamental biology of infection. TAKE AWAYS: hPSC overcome current limitations to study host-pathogen interactions in vitro. Genome editing can be used in hPSC to study cellular responses to infection. hPSC, 3D models and genome editing can recreate physiological in vitro systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cmi.13335 | DOI Listing |
Cell Regen
January 2025
Department of Neurology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
The cultivation and differentiation of human embryonic stem cells (hESCs) into organoids are crucial for advancing of new drug development and personalized cell therapies. Despite establishing of chemically defined hESC culture media over the past decade, these media's reliance on growth factors, which are costly and prone to degradation, poses a challenge for sustained and stable cell culture. Here, we introduce an hESC culture system(E6Bs) that facilitates the long-term, genetically stable expansion of hESCs, enabling cells to consistently sustain high levels of pluripotency markers, including NANOG, SOX2, TRA-1-60, and SSEA4, across extended periods.
View Article and Find Full Text PDFHistochem Cell Biol
January 2025
Department of Histology and Embryology, Faculty of Medicine, Ankara Yildirim Beyazit University, 06800, Ankara, Turkey.
Bone marrow mesenchymal stromal cells (BM-MSCs) are integral components of the bone marrow microenvironment, playing a crucial role in supporting hematopoiesis. Recent studies have investigated the potential involvement of BM-MSCs in the pathophysiology of acute lymphoblastic leukemia (ALL). However, the exact contribution of BM-MSCs to leukemia progression remains unclear because of conflicting findings and limited characterization.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.
Purpose Of The Review: This review aims to discuss the process of cardiomyocyte maturation, with a focus on the underlying molecular mechanisms required to form a fully functional heart. We examine both long-standing concepts associated with cardiac maturation and recent developments, and the overall complexity of molecularly integrating all the processes that lead to a mature heart.
Recent Findings: Cardiac maturation, defined here as the sequential changes that occurring before the heart reaches full maturity, has been a subject of investigation for decades.
J Mol Med (Berl)
January 2025
Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, Jiangsu Province, China.
Glucose phosphate isomerase (GPI) deficiency caused by GPI gene mutations is a rare heterogenous condition that causes hereditary non-spherocytic hemolytic anemia (HNSHA). Patients who suffer from severe anemia may need more effective treatment. Here, clinical data and genetic testing results of two cases of HNSHA with GPI mutations treated with allogeneic hematopoietic stem cell transplantation (allo-HSCT) were retrospectively analyzed.
View Article and Find Full Text PDFEur J Histochem
January 2025
Department of Critical Care Medicine, The Qujing No.1 People's Hospital, Qujing.
Intestinal barrier damage causes an imbalance in the intestinal flora and microbial environment, promoting a variety of gastrointestinal diseases. This study aimed to explore the mechanism by which adipose-derived stem cells (ADSCs) repair intestinal barrier damage. The human colon adenocarcinoma cell line Caco-2 and rats were treated with lipopolysaccharide (LPS) to establish in vitro and in vivo models, respectively, of intestinal barrier damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!