Hypertrophic Scar (HS) is a complicated fibrotic disease. In addition, its pathogenesis is still to be further explored. Long non-coding RNAs (lncRNAs) have been proved to be participated in multiple diseases, including HS. However, the role of lncRNA TUG1 in HS remains unclear. The expression level of RNA and protein in cells were detected by q-PCR and western blot, respectively. MTT assay was performed to test the cell proliferation. Cell migration was detected by transwell assay. Cell apoptosis was measured by flow cytometry. Dual luciferase report assay and RNA pull down were used to verify the relationship between TUG1, miR-27b-3p and TAK1.TUG1 and TAK1 were upregulated in HS, while miR-27b-3p was downregulated. Knockdown of TUG1 significantly suppressed the proliferation and migration and induced the apoptosis of HS fibroblasts (HSF). In addition, silencing of TUG1 notably inhibited the extracellular matrix (ECM) biosynthesis in HSF. Overexpression of miR-27b-3p has the same effect on HS as that of TUG1 knockdown. Meanwhile, TUG1 could sponge miR-27b-3p, and TAK1 was the direct target of miR-27b-3p. Furthermore, knockdown of TUG1 significantly suppressed the fibrosis in HS via miR-27b-3p/TAK1/YAP/TAZ axis mediation. LncRNA TUG1 promotes the fibrosis in HS via sponging miR-27b-3p and then activates TAK1/YAP/TAZ pathway, which may serve as a potential target for treatment of HS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-021-04142-0 | DOI Listing |
Anatol J Cardiol
November 2024
Department of Cardiology, The First People's Hospital of Huzhou, Huzhou City, Zhejiang Province, China.
Background: The purpose of this study was to probe the specific role of long noncoding RNA taurine upregulation 1 (LncRNA TUG1) in viral myocarditis (VMC).
Methods: The mouse model of VMC was induced by Coxsackievirus type B3 (CVB3). LncRNA TUG1 was subsequently silenced, and micro-140-3p (miR-140-3p) was overexpressed in VMC mice.
Biomol Biomed
October 2024
Department of Hematology, Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China.
Acute myeloid leukemia (AML) is a fatal malignancy with rising incidence and low cure rates. This study aims to investigate the effect of alkB homolog 5 (ALKBH5)-mediated N6-methyladenosine (m6A) modification on adriamycin (ADR) resistance in AML. First, the levels of ALKBH5, taurine upregulated 1 (TUG1), YTH N6-methyladenosine RNA binding protein F2 (YTHDF2), euchromatic histone lysine methyltransferase 2 (EHMT2), and SH3 domain-binding glutamate-rich protein-like (SH3BGRL) were measured.
View Article and Find Full Text PDFmBio
November 2024
Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
Folia Neuropathol
August 2024
Department of Anesthesiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, 341000, China.
Food Chem Toxicol
October 2024
Medical College, Jiaxing University, Jiaxing, 314000, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!