Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Puncture mechanics can be studied in the context of predator-prey interactions and provide bioinspiration for puncture tools and puncture-resistant materials. Lionfish have a passive puncture system where venomous spines (dorsal, anal, and pelvic), the tool, may embed into a predator's skin, the target material, during an encounter. To examine predator-prey interactions, we quantified the puncture performance of red lionfish, , spines in buccal skin from two potential predators and porcine skin, a biological model for human skin. We punctured dorsal, anal, and pelvic lionfish spines into three regions of buccal skin from the black grouper () and the blacktip shark (), and we examined spine macro-damage (visible without a microscope) post puncture. Lionfish spines were more effective, based on lower forces measured and less damage incurred, at puncturing buccal skin of groupers compared to sharks. Anal and dorsal spines incurred the most macro-damage during successful fish skin puncture trials, while pelvic spines did not incur any macro-damage. Lionfish spines were not damaged during porcine skin testing. Anal spines required the highest forces, while pelvic spines required intermediate forces to puncture fish skin. Dorsal spines required the lowest forces to puncture fish skins, but often incurred macro-damage of bent tips. All spine regions required similar forces to puncture porcine skin. These data suggest that lionfish spines may be more effective at puncturing humans such as divers than potential fish predators. These results emphasize that puncture performance is ultimately determined by both the puncture tool and target material choice. Lionfish puncture performance varies among spine region, when taking into account both the puncture force and damage sustained by the spine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7840115 | PMC |
http://dx.doi.org/10.1093/iob/obaa049 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!