Many insects encounter locomotory difficulties in walking up sand inclines. This is masterfully exploited by some species for building traps from which prey are rarely able to escape, as the antlion and its deadly pit. The aim of this work is to tear apart the relative roles of granular material properties and slope steepness on the insect leg kinematics, gait patterns, and locomotory stability. For this, we used factorial manipulative experiments with different granular media inclines and the ant . Our results show that its locomotion is similar on granular and solid media, while for granular inclined slopes we observe a loss of stability followed by a gait pattern transition from tripod to metachronal. This implies that neither the discrete nature nor the roughness properties of sand alone are sufficient to explain the struggling of ants on sandy slopes: the interaction between sand properties and slope is key. We define an abnormality index that allows us to quantify the locomotory difficulties of insects walking up a granular incline. The probability of its occurrence reveals the local slipping of the granular media as a consequence of the pressure exerted by the ant's legs. Our findings can be extended to other models presenting locomotory difficulties for insects, such as slippery walls of urns of pitcher plants. How small arthropods walking on granular and brittle materials solve their unique stability trade-off will require a thorough understanding of the transfer of energy from leg to substrate at the particle level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671155 | PMC |
http://dx.doi.org/10.1093/iob/obz020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!