The incidence of colorectal cancer (CRC) has been increasing worldwide in recent years. Targeting cancer stem cells (CSCs) in CRC remains a difficult challenge. KDM2B and EZH2 play important role in the maintenance of CSCs' self-renewal capacity and tumorigenic ability; however, the biological functions of those genes in CRC remain unclear. In this study, we aimed to define the contribution of the expression of KDM2B in the features of CRC and establish the relationship between KDM2B and EZH2 in colorectal CSCs. The expression of KDM2B and EZH2 in the specimens of CRC and CRC cell lines were analyzed by immunohistochemistry, Western blot, and immunofluorescence. The underlying mechanisms of altered expressions of KDM2B and EZH2 and their impact on the biologic features of CRC and stemness in CRC were investigated. The KDM2B gene was highly expressed in CRC tissues, and its overexpression positively correlated with tumor stages and tumor/node/metastasis (TNM) classification. The downregulation of KDM2B retarded cell proliferation, induced DNA damage, reduced spheroid formation, and decreased CRC stem cell markers: CD44, CD133, and ALDH-1. Moreover, the downregulation of KDM2B decreased the expression of EZH2 and both regulated cell migration, invasion, and stemness in the CRC cell line. Additionally, the interaction between KDM2B and EZH2 significantly increased the components of the PI3K/AKT pathway including AKT and PI3K. The high expression of KDM2B positively correlated with EZH2 in CRC tissues. This study shows that the downregulation of KDM2B and EZH2 can regulate CRC cell stemness, and their interaction may serve as a novel prognostic marker and therapeutic target for patients with CRC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8006351 | PMC |
http://dx.doi.org/10.3389/fonc.2021.637298 | DOI Listing |
Stem Cell Res Ther
November 2024
School of Stomatology, Dalian Medical University, Dalian, 116044, China.
Background: Improving the microenvironment to augment endogenous regenerative potential has emerged as a fundamental concept for stimulating and expediting periodontal tissue repair and regeneration. Previous studies have demonstrated that TPPU, a soluble epoxide hydrolase inhibitor (sEHi), mediates the suppression of inflammatory bone loss in periodontitis models. However, the underlying mechanisms remain largely elusive.
View Article and Find Full Text PDFCell Prolif
October 2024
Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.
How to improve the neurogenic potential of mesenchymal stem cells (MSCs) and develop biological agent based on the underlying epigenetic mechanism remains a challenge. Here, we investigated the effect of histone demethylase Lysine (K)-specific demethylase 2B (KDM2B) on neurogenic differentiation and nerve injury repair by using MSCs from dental apical papilla (SCAP). We found that KDM2B promoted the neurogenic indicators expression and neural spheres formation in SCAP, and modified the Histone H3K4 trimethylation (H3K4me3) methylation on neurogenesis-related genes.
View Article and Find Full Text PDFCell Biol Int
September 2022
Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook, Stony Brook, New York, USA.
Somatic cell reprogramming was achieved by lentivirus mediated overexpression of four transcription factors called OSKM: OCT3/4, SOX2, KLF4, and c-MYC but it was not very efficient. Here, we reported that the transcription factor, LMCD1 (LIM and cysteine rich domains 1) together with OSKM can induce reprogramming of human dermal fibroblasts into induced pluripotent stem cells (iPSCs) more efficiently than OSKM alone. At the same time, the number of iPSCs clones were reduced when we knocked down LMCD1.
View Article and Find Full Text PDFExp Cell Res
August 2022
Department of Laboratory Animal Science, China Medical University, Shenyang, 110122, Liaoning, PR China. Electronic address:
The significance of KDM2B in oncogenesis has been appreciated, but the mechanism behind is incompletely understood. In this work, we addressed its effects on the progression of non-small cell lung cancer (NSCLC). Overexpression of KDM2B was linked to dismal prognoses of NSCLC patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!