Cancer immunotherapy has led to significant therapeutic progress in the treatment of metastatic and formerly untreatable tumors. However, drug response rates are variable and often only a subgroup of patients will show durable response to a treatment. Biomarkers that help to select those patients that will benefit the most from immunotherapy are thus of crucial importance. Here, we aim to identify such biomarkers by investigating the tumor microenvironment, i.e., the interplay between different cell types like immune cells, stromal cells and malignant cells within the tumor and developed a computational method that determines spatial tumor infiltration phenotypes. Our method is based on spatial point pattern analysis of immunohistochemically stained colorectal cancer tumor tissue and accounts for the intra-tumor heterogeneity of immune infiltration. We show that, compared to base-line models, tumor infiltration phenotypes provide significant additional support for the prediction of established biomarkers in a colorectal cancer patient cohort ( = 80). Integration of tumor infiltration phenotypes with genetic and genomic data from the same patients furthermore revealed significant associations between spatial infiltration patterns and common mutations in colorectal cancer and gene expression signatures. Based on these associations, we computed novel gene signatures that allow one to predict spatial tumor infiltration patterns from gene expression data only and validated this approach in a separate dataset from the Cancer Genome Atlas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8006941 | PMC |
http://dx.doi.org/10.3389/fonc.2021.552331 | DOI Listing |
Cell Signal
January 2025
Department of Breast and Thyroid Surgery, The Qinghai Provincial People's Hospital, Xining 810007, China. Electronic address:
This study utilizes single-cell RNA sequencing data to reveal the transcriptomic characteristics of breast cancer and normal epithelial cells. Nine significant cell populations were identified through stringent quality control and batch effect correction. Further classification of breast cancer epithelial cells based on the PAM50 method and clinical subtypes highlighted significant heterogeneity between triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (NTNBC).
View Article and Find Full Text PDFCurr Res Transl Med
January 2025
Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:
Background: Stromal cells play a pivotal role in the tumor microenvironment (TME), significantly impacting the progression of acute myeloid leukemia (AML). This study sought to develop a stromal-related prognostic model for AML, aiming to uncover novel prognostic markers and therapeutic targets.
Methods: RNA expression data and clinical profiles of AML patients were retrieved from the Cancer Genome Atlas (TCGA).
Immun Inflamm Dis
January 2025
Second Department of Oncology, Guangdong Second Provincial General Hospital, Guangzhou, China.
Background: SET domain-containing protein 4 (SETD4) is a histone methyltransferase that has been shown to modulate cell proliferation, differentiation, and inflammatory responses by regulating histone H4 trimethylation (H4K20me3). Previous reports have demonstrated its function in the quiescence of cancer stem cells as well as drug resistance in several cancers. A limited number of systematic studies have examined SETD4's role in the tumor microenvironment, pathogenesis, prognosis, and therapeutic response.
View Article and Find Full Text PDFCancer Med
January 2025
Cancer Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
Background: This study aims to elucidate the expression pattern of SERPINE1, assess its prognostic significance, and explore potential therapeutic drugs targeting this molecule.
Methods And Results: In this study, we delved into the variations in gene mutation, methylation patterns, and expression levels of SERPINE1 in head and neck squamous cell carcinoma (HNSCC) and normal tissues, leveraging comprehensive analyses of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. The connection between the biological function of the gene and prognosis was scrutinized through immune infiltration and enrichment analyses.
J Clin Invest
January 2025
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
The pathogenesis of thoracic aortic aneurysm (TAA) in Marfan syndrome (MFS) is generally attributed to vascular smooth muscle cell (VSMC) pathologies. However, the role of immune cell-mediated inflammation remains elusive. Single-cell RNA sequencing identified a subset of CX3CR1+ macrophages mainly located in the intima in the aortic roots and ascending aortas of Fbn1C1041G/+ mice, further validated in MFS patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!