Probiotic-derived p8 protein induce apoptosis via regulation of RNF152 in colorectal cancer cells.

Am J Cancer Res

R&D Center, Cell Biotech, Co., Ltd 50, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do 10003, Korea.

Published: March 2021

Worldwide, colorectal cancer (CRC) is one of the most common cancers and is a leading cause of cancer-related deaths. Accumulating evidence suggests that probiotics suppress the development of various cancers including CRC. Recently, we reported a (LR)-derived 8 kDa protein (p8) that displayed anti-cancer properties in CRC cells. However, the precise anti-cancer mechanism of p8 and its target genes has not been fully examined. In the present study, we reveal that p8 leads to apoptotic cells and cleaved PARP1 expression in a mouse xenograft model of CRC. Additionally, we identified Ring finger protein 152 (RNF152) as a putative target of p8 using RNA-sequencing. Furthermore, the expression levels of RNF152 were increased following and treatment with p8. We also found that p8 leads to the accumulation of cleaved PARP1 in CRC cells. These results suggest that p8 induces apoptosis via regulation of RNF152, thus inhibiting the development of CRC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994155PMC

Publication Analysis

Top Keywords

apoptosis regulation
8
regulation rnf152
8
colorectal cancer
8
crc cells
8
cleaved parp1
8
crc
6
probiotic-derived protein
4
protein induce
4
induce apoptosis
4
rnf152
4

Similar Publications

NS1 binding protein regulates stress granule dynamics and clearance by inhibiting p62 ubiquitination.

Nat Commun

December 2024

Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.

The NS1 binding protein, known for interacting with the influenza A virus protein, is involved in RNA processing, cancer, and nerve cell growth regulation. However, its role in stress response independent of viral infections remains unclear. This study investigates NS1 binding protein's function in regulating stress granules during oxidative stress through interactions with GABARAP subfamily proteins.

View Article and Find Full Text PDF

Inflammasomes are defense complexes that utilize cytokines and immunogenic cell death (ICD) to stimulate the immune system against pathogens. Inspired by their dual action, we present cytokine-armed pyroptosis as a strategy for boosting immune response against diverse types of tumors. To induce pyroptosis, we utilize designed tightly regulated gasdermin D variants comprising different pore-forming capabilities and diverse modes of activation, representing a toolbox of ICD inducers.

View Article and Find Full Text PDF

CENP-E haploinsufficiency causes chromosome misalignment and spindle assembly checkpoint activation in the spermatogonia.

Andrology

December 2024

Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.

Background: The establishment of kinetochore-microtubule attachment is essential for error-free chromosome alignment and segregation during cell division. Defects in chromosome alignment result in chromosome instability, birth defects, and infertility. Kinesin-7 CENP-E mediates kinetochore-microtubule capture, chromosome alignment, and spindle assembly checkpoint in somatic cells, however, mechanisms of CENP-E in germ cells remain poorly understood.

View Article and Find Full Text PDF

Sex-dependent molecular landscape of Alzheimer's disease revealed by large-scale single-cell transcriptomics.

Alzheimers Dement

December 2024

Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.

Introduction: Alzheimer's disease (AD) shows significant sex differences in prevalence and clinical manifestations, but the underlying molecular mechanisms remain unclear.

Methods: This study used a large-scale, single-cell transcriptomic atlas of the human prefrontal cortex to investigate sex-dependent molecular changes in AD. Our approach combined cell type-specific and sex-specific differential gene expression analysis, pathway enrichment, gene regulatory network construction, and cell-cell communication analysis to identify sex-dependent changes.

View Article and Find Full Text PDF

Epithelial Polarity Loss and Multilayer Formation: Insights Into Tumor Growth and Regulatory Mechanisms.

Bioessays

December 2024

Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA.

Epithelial tissues serve as critical barriers in metazoan organisms, maintaining structural integrity and facilitating essential physiological functions. Epithelial cell polarity regulates mechanical properties, signaling, and transport, ensuring tissue organization and homeostasis. However, the barrier function is challenged by cell turnover during development and maintenance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!