Long noncoding RNAs (lncRNAs) have attracted extensive attention due to their regulatory role in various cellular processes. Emerging studies have indicated that lncRNAs are expressed to varying degrees after the growth and development of the nervous system as well as injury and degeneration, thus affecting various physiological processes of the nervous system. In this review, we have compiled various reported lncRNAs related to the growth and development of central and peripheral nerves and pathophysiology (including advanced nerve centers, spinal cord, and peripheral nervous system) and explained how these lncRNAs play regulatory roles through their interactions with target-coding genes. We believe that a full understanding of the regulatory function of lncRNAs in the nervous system will contribute to understand the molecular mechanism of changes after nerve injury and will contribute to discover new diagnostic markers and therapeutic targets for nerve injury diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7984887PMC
http://dx.doi.org/10.1155/2021/6657944DOI Listing

Publication Analysis

Top Keywords

nervous system
20
regulatory roles
8
lncrnas nervous
8
growth development
8
will contribute
8
nerve injury
8
lncrnas
6
nervous
5
system
5
studies regulatory
4

Similar Publications

Background: Biallelic pathogenic variants in the FUCA1 gene are associated with fucosidosis. This report describes a 4-year-old boy presenting with psychomotor regression, spasticity, and dystonic postures.

Methods And Results: Trio-based whole exome sequencing revealed two previously unreported loss-of-function variants in the FUCA1 gene.

View Article and Find Full Text PDF

Background: Degeneration of the basal forebrain cholinergic system is a hallmark feature shared by Alzheimer's disease (AD) and Lewy body disease (LBD) whereas hippocampus atrophy is more specifically related to AD. We aimed to investigate the relationship between basal forebrain and hippocampus atrophy, cognitive decline, and neuropathology in a large autopsy sample.

Methods: Data were obtained from the National Alzheimer's Coordinating Center (NACC).

View Article and Find Full Text PDF

The determinants of varicella-zoster virus (VZV)-associated central nervous system (CNS) infection have not been fully elucidated. This study aimed to investigate the incidence and risk factors, including immunosuppression, for different manifestations of VZV-associated CNS infection. Patient registers were used to include adults diagnosed with VZV-associated CNS infections between 2010 and 2019 in Sweden.

View Article and Find Full Text PDF

Obstructive sleep apnea and structural and functional brain alterations: a brain-wide investigation from clinical association to genetic causality.

BMC Med

January 2025

Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China.

Background: Obstructive sleep apnea (OSA) is linked to brain alterations, but the specific regions affected and the causal associations between these changes remain unclear.

Methods: We studied 20 pairs of age-, sex-, BMI-, and education- matched OSA patients and healthy controls using multimodal magnetic resonance imaging (MRI) from August 2019 to February 2020. Additionally, large-scale Mendelian randomization analyses were performed using genome-wide association study (GWAS) data on OSA and 3935 brain imaging-derived phenotypes (IDPs), assessed in up to 33,224 individuals between December 2023 and March 2024, to explore potential genetic causality between OSA and alterations in whole brain structure and function.

View Article and Find Full Text PDF

Noise-induced hearing loss (NIHL) is a common occupational condition. The aim of this study was to develop a classification model for NIHL on the basis of both functional magnetic resonance imaging (fMRI) and structural magnetic resonance imaging (sMRI) by applying machine learning methods. fMRI indices such as the amplitude of low-frequency fluctuation (ALFF), fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), degree of centrality (DC), and sMRI indices such as gray matter volume (GMV), white matter volume (WMV), and cortical thickness were extracted from each brain region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!