Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hyperproliferation of fibroblasts is the main cause of keloid formation. However, the pathogenesis of keloids has yet to be fully elucidated. Tumor necrosis factor (TNF)-α may play an important role in the formation and proliferation of keloids, as it is implicated in the pathogenesis of various fibrous disorders. In the present study, the expression level of TNF-α and its receptors, soluble TNF receptor (sTNFR)1 and sTNFR2, in the peripheral blood and skin tissues was detected by ELISA, reverse transcription-quantitative PCR or immunohistochemistry. There was no statistically significant difference in the expression of TNF-α and sTNFR2 in the peripheral blood and skin tissues between patients with keloids and healthy participants (P>0.05), while the sTNFR1 mRNA level in fibroblasts cultured and its protein level in keloid skin samples were significantly higher compared with those in normal skin (P<0.05). Subsequently, TNF-α recombinant protein was used to treat keloid-derived and normal skin fibroblasts, and it was observed that TNF-α promoted the proliferation of keloid fibroblasts (KFs), but had little effect on normal skin fibroblasts. Furthermore, it was observed that TNF-α stimulation led to the activation of the nuclear factor (NF)-κB, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) pathways in KFs. In conclusion, KFs exhibited increased expression of sTNFR1, which may contribute to the increased sensitivity to TNF-α, resulting in low concentrations of TNF-α activating the NF-κB, JNK and p38 MAPK pathways, thereby promoting the sustained and excessive proliferation of KFs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8005672 | PMC |
http://dx.doi.org/10.3892/etm.2021.9933 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!