CO fermentation by biocatalysis is a promising route for the sustainable production of valuable chemicals and fuels, such as acetic acid and ethanol. Considering the important role of environmental parameters on fermentation processes, granular sludge from an industrial anaerobic wastewater treatment system was tested as inoculum for ethanol production from H/CO at psychrophilic (18°C), submesophilic (25°C), and mesophilic (30°C) temperatures. The highest acetic acid and ethanol production was obtained at 25°C with a final concentration of 29.7 and 8.8 mM, respectively. The presence of bicarbonate enhanced acetic acid production 3.0 ∼ 4.1-fold, while inhibiting ethanol production. The addition of 0.3 g/L glucose induced butyric acid production (3.7 mM), while 5.7 mM ethanol was produced at the end of the incubation at pH 4 with glucose. The addition of 10 μM W enhanced ethanol production up to 3.8 and 7.0-fold compared to, respectively, 2 μM W addition and the control. The addition of 2 μM Mo enhanced ethanol production up to 8.1- and 5.4-fold compared to, respectively, 10 μM Mo and the control. This study showed that ethanol production from H/CO conversion using granular sludge as the inoculum can be optimized by selecting the operational temperature and by trace metal addition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8006448PMC
http://dx.doi.org/10.3389/fmicb.2021.647370DOI Listing

Publication Analysis

Top Keywords

ethanol production
24
production h/co
12
granular sludge
12
acetic acid
12
production
9
parameters fermentation
8
ethanol
8
acid ethanol
8
acid production
8
addition μm
8

Similar Publications

Desalting of oligonucleotides through precipitation for mass spectrometric analysis.

Nucleosides Nucleotides Nucleic Acids

January 2025

Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, ON, Canada.

Contamination of sodium ions in oligonucleotides often causes issues in mass spectrometric analysis. This study investigated the efficiency of the combination of ammonium acetate and alcohol in desalting oligonucleotides. It was found that oligonucleotide samples containing up to 4 M NaCl can be effectively desalted through precipitation with ethanol or isopropanol in the presence of 1 or 5 M ammonium acetate.

View Article and Find Full Text PDF

Cucumber () trichomes play a critical role in resisting external biological and abiotic stresses. Glandular trichomes are particularly significant as they serve as sites for the synthesis and secretion of secondary metabolites, while non-glandular trichomes are pivotal for determining the appearance quality of cucumbers. However, current methods for separating trichomes encounter challenges such as low efficiency and insufficient accuracy, limiting their applicability in multi-omics sequencing studies.

View Article and Find Full Text PDF

Semiconductor metal oxide gas sensors are widely used to detect ethanol vapours, commonly used in industrial productions, road safety detection, and solvent production; however, they operate at extremely high temperatures. In this work, we present manganese dioxide nanorods (MnO NRs) prepared via hydrothermal synthetic route, carbon soot (CNPs) prepared via pyrolysis of lighthouse candle, and poly-4-vinylpyridine (P4VP) composite for the detection of ethanol vapour at room temperature. MnO, CNPs, P4VP, and MnO NRs-CNPs-P4VP composite were characterised using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy.

View Article and Find Full Text PDF

Initial abiotic factors as key drivers in core microbe assembly: Regulatory effects on flavor profiles in light-flavor .

Food Chem X

January 2025

Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China.

Instability in initial abiotic factors of open solid-state fermentation systems can significantly alter 's flavor profile, but the mechanisms governing microbial interactions and flavor formation remain unclear. This study comprehensively monitored changes in abiotic factors, microbial communities, and flavor profiles across two distinct fermentation processes in a distillery, which differed significantly in their management of initial abiotic factors. Our results revealed significant differences in abiotic factors between the two groups, including moisture, ethanol, acidity, glucose, and organic acid levels.

View Article and Find Full Text PDF

Electrocatalytic methane conversion via in-situ generated superoxide radicals in an aprotic ionic liquid.

J Colloid Interface Sci

January 2025

Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 PR China. Electronic address:

The electrochemical activation and partial oxidation of methane are highly attractive to enable the direct conversion in a sustainable and decentralized way. Herein, we report an electrochemical system in a non-diaphragm electrochemical bath to convert CH to CHOH and CHCHOH at room temperature, in which VO·HO as the anodic catalyst to activate CH and an aprotic ionic liquid [BMIM]BF as supporting electrolyte to control superoxide radicals (O) as the main active oxygen species generated on cathode. As a result, methanol and ethanol were identified as the liquid products, and the superior methanol Faraday efficiency (FE) of 32.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!