Bronchopulmonary Dysplasia is the most common long-term respiratory morbidity of preterm infants, with the risk of development proportional to the degree of prematurity. While its pathophysiologic and histologic features have changed over time as neonatal demographics and respiratory therapies have evolved, it is now thought to be characterized by impaired distal lung growth and abnormal pulmonary microvascular development. Though the exact sequence of events leading to the development of BPD has not been fully elucidated and likely varies among patients, it is thought to result from inflammatory and mechanical/oxidative injury from chronic ventilatory support in fragile, premature lungs susceptible to injury from surfactant deficiency, structural abnormalities, inadequate antioxidant defenses, and a chest wall that is more compliant than the lung. In addition, non-pulmonary issues may adversely affect lung development, including systemic infections and insufficient nutrition. Once BPD has developed, its management focuses on providing adequate gas exchange while promoting optimal lung growth. Pharmacologic strategies to ameliorate or prevent BPD continue to be investigated. A variety of agents, to be reviewed henceforth, have been developed or re-purposed to target different points in the pathways that lead to BPD, including anti-inflammatories, diuretics, steroids, pulmonary vasodilators, antioxidants, and a number of molecules involved in the cell signaling cascade thought to be involved in the pathogenesis of BPD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8006962 | PMC |
http://dx.doi.org/10.2147/JEP.S262350 | DOI Listing |
Ann Thorac Surg Short Rep
September 2024
Department of Thoracic Surgery, University Hospital Leuven, Leuven, Belgium.
We present the case of a 28-year-old female patient who underwent a bilateral lung transplantation for underlying terminal bronchopulmonary dysplasia. The peroperative access to the hilum of the right lung was significantly compromised due to the presence of a pectus excavatum (Haller index 11). We used a wired sternal crane technique to elevate the sternum and gain exposure.
View Article and Find Full Text PDFAm J Perinatol
January 2025
Pediatrics, University of California San Francisco, San Francisco, United States.
Objective: Extremely premature infants are treated with acetaminophen (APAP) for pain and patent ductus arteriosus. High doses of APAP in adults are toxic, and a recent study found an association between APAP metabolite levels in mothers' breast milk and both bronchopulmonary dysplasia (BPD) and retinopathy of prematurity (ROP) in their premature infants. In this study, we determined levels of APAP metabolites in urine of infants at high risk for BPD and ROP.
View Article and Find Full Text PDFJ Perinat Neonatal Nurs
October 2024
Author Affiliations:Duke University School of Nursing, Durham (Ms Adeku, Mrs Defore, Dr Newberry, and Ms Yates); University of North Carolina Neonatology, Chapel Hill (Dr Newberry); and Duke University Neonatology, Durham, North Carolina (Ms Yates).
Background: Bronchopulmonary dysplasia (BPD) is a prevalent chronic lung disease affecting premature infants, leading to long-term respiratory complications, hospital readmissions, and significant financial burden on families and the health care system. BPD is caused by lung injury, making it crucial to focus on methods to minimize lung injury and prevent the transition from respiratory distress syndrome to BPD by following evidence-based respiratory support strategies.
Purpose: This scoping review examines methods for weaning preterm infants off continuous positive airway pressure (CPAP) and evaluates their effectiveness in maintaining respiratory independence.
PLoS One
January 2025
Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
Pulmonary surfactant (PS) is one of the main treatment for neonates with respiratory distress syndrome (RDS). Budesonide has recently been studied as an additional treatment in such cases, but there is limited evidence supporting this. This study was implemented to determine the efficacy of PS combined with budesonide in premature infants.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA.
Bronchopulmonary dysplasia, the most prevalent chronic lung disease of prematurity, is often treated with glucocorticoids (GCs) such as dexamethasone (DEX), but their use is encumbered with several adverse somatic, metabolic, and neurologic effects. We previously reported that systemic delivery of the GC prodrug ciclesonide (CIC) in neonatal rats activated glucocorticoid receptor (GR) transcriptional responses in lung but did not trigger multiple adverse effects caused by DEX. To determine whether limited systemic metabolism of CIC was solely responsible for its enhanced safety profile, we treated neonatal rats with its active metabolite desisobutyryl-ciclesonide (Des-CIC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!