Background: Evidence suggests that fronto-limbic brain regions and connecting white matter fibre tracts in the left hemisphere are more sensitive to glucocorticoids than in the right hemisphere. It is unknown whether treatment with glucocorticoids in childhood is associated with microstructural differences of the uncinate fasciculus and cingulum bundle, which connect fronto-limbic brain regions. Here, we tested the hypothesis that prior glucocorticoid treatment would be associated with differences in fractional anisotropy (FA) of the left relative to right uncinate fasciculus and cingulum bundle.
Methods: We performed diffusion-weighted imaging in 28 children and adolescents aged 7-16 years previously treated with glucocorticoids for nephrotic syndrome or rheumatic disease and 28 healthy controls.
Results: Patients displayed significantly different asymmetry in the microstructure of uncinate fasciculus with higher left but similar right uncinate fasciculus FA and axial diffusivity compared to controls. No apparent differences were observed for the cingulum. Notably, higher cumulative glucocorticoid doses were significantly associated with higher uncinate fasciculus FA and axial diffusivity bilaterally.
Conclusions: Our findings indicate that previous glucocorticoid treatment for non-cerebral diseases in children and adolescents is associated with long-term changes in the microstructure of the uncinate fasciculi, and that higher cumulative glucocorticoid doses have a proportional impact on the microstructure.
Impact: It is unknown if treatment with glucocorticoids in childhood have long-term effects on fronto-limbic white matter microstructure. The study examined if children and adolescents previously treated with glucocorticoids for nephrotic syndrome or rheumatic disorder differed in fronto-limbic white matter microstructure compared to healthy controls. The nephrotic and rheumatic patients had higher left but similar right uncinate fasciculus FA and axial diffusivity. Higher bilateral uncinate fasciculus FA and axial diffusivity was associated with higher cumulative glucocorticoid doses. We revealed new evidence suggesting that previous glucocorticoid treatment for non-cerebral diseases in children and adolescents is associated with long-term changes in uncinate fasciculi microstructure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41390-021-01394-w | DOI Listing |
J Neurol Neurosurg Psychiatry
January 2025
Department of Psychology, Nanyang Technological University, Singapore
Background: White matter hyperintensities (WMH) have been implicated in the pathogenesis of neuropsychiatric symptoms of dementia but the functional significance of WMH in specific white matter (WM) tracts is unclear. We investigate whether WMH burden within major WM fibre classes and individual WM tracts are differentially associated with different neuropsychiatric syndromes in a large multicentre study.
Method: Neuroimaging and neuropsychiatric data of seven memory clinic cohorts through the Meta VCI Map consortium were harmonised.
Neurorehabil Neural Repair
January 2025
Department of Rehabilitation Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
Background: Unilateral hemispheric stroke can impair the ipsilesional motor performance, which is crucial for attaining optimal functional outcomes poststroke. However, the specific brain structures contributing to ipsilesional motor performance impairment remain unclear.
Objective: To explore the link between ipsilesional motor performance and the microstructural integrity of relevant neural pathways.
EClinicalMedicine
September 2024
Department of Medicine, University of Cambridge, Cambridge, UK.
Background: Even patients with normal computed tomography (CT) head imaging may experience persistent symptoms for months to years after mild traumatic brain injury (mTBI). There is currently no good way to predict recovery and triage patients who may benefit from early follow-up and targeted intervention. We aimed to assess if existing prognostic models can be improved by serum biomarkers or diffusion tensor imaging metrics (DTI) from MRI, and if serum biomarkers can identify patients for DTI.
View Article and Find Full Text PDFbioRxiv
December 2024
Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
This study presents large-scale normative models of white matter (WM) organization across the lifespan, using diffusion MRI data from over 25,000 healthy individuals aged 0-100 years. These models capture lifespan trajectories and inter-individual variation in fractional anisotropy (FA), a marker of white matter integrity. By addressing non-Gaussian data distributions, race, and site effects, the models offer reference baselines across diverse ages, ethnicities, and scanning conditions.
View Article and Find Full Text PDFIntroduction: White matter tracts that connect different parts of the brain comprise the structural connectome, which is essential to its operation. Assessing behavioral changes and brain health requires an understanding of these tracts. Diffusion tensor imaging (DTI), in particular, allows for the thorough viewing and characterization of these routes in tractography.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!