Despite the tremendous progress of coupling organic electrooxidation with hydrogen generation in a hybrid electrolysis, electroreforming of raw biomass coupled to green hydrogen generation has not been reported yet due to the rigid polymeric structures of raw biomass. Herein, we electrooxidize the most abundant natural amino biopolymer chitin to acetate with over 90% yield in hybrid electrolysis. The overall energy consumption of electrolysis can be reduced by 15% due to the thermodynamically and kinetically more favorable chitin oxidation over water oxidation. In obvious contrast to small organics as the anodic reactant, the abundance of chitin endows the new oxidation reaction excellent scalability. A solar-driven electroreforming of chitin and chitin-containing shrimp shell waste is coupled to safe green hydrogen production thanks to the liquid anodic product and suppression of oxygen evolution. Our work thus demonstrates a scalable and safe process for resource upcycling and green hydrogen production for a sustainable energy future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012647PMC
http://dx.doi.org/10.1038/s41467-021-22250-9DOI Listing

Publication Analysis

Top Keywords

raw biomass
12
green hydrogen
12
hydrogen generation
12
coupled green
8
hybrid electrolysis
8
biomass electroreforming
4
electroreforming coupled
4
hydrogen
4
generation despite
4
despite tremendous
4

Similar Publications

Review on synthesis of lactic acid and lactates from biomass derived carbohydrates via heterogeneous catalysis.

Bioresour Technol

December 2024

National & Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.

The utilization of renewable lignocellulosic biomass resources is a promising solution to deal with the deficit of fossil resources and the associated environmental concerns. Among diverse biomass-derived products, lactic acid (LA) stands out as one of the most successful commodities and also a platform to connect raw biomass feedstocks with value-added chemicals and degradable polymers. Herein, we critically review the recent advances in the design and development of base, acid, and multifunctional catalytic systems for the conversion of different carbohydrates to LA and alkyl lactates via chemical routes.

View Article and Find Full Text PDF

Natural pigments and biogas recovery from cyanobacteria grown in treated wastewater. Fate of organic microcontaminants.

Water Res

December 2024

GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, Barcelona 08034, Spain. Electronic address:

Cyanobacterial wastewater-based biorefineries are a sustainable alternative to obtain high-value products with reduced costs. This study aimed to obtain phycobiliproteins and carotenoids, along with biogas from a wastewater-borne cyanobacterium grown in secondary effluent from an urban wastewater treatment plant, namely treated wastewater. For the first time, the presence of contaminants of emerging concern in concentrated pigment extracts was assessed.

View Article and Find Full Text PDF

Biomass-Based Microbial Protein Production: A Review of Processing and Properties.

Front Biosci (Elite Ed)

December 2024

Environmental Sciences, Faculty of Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA.

A rise in population and societal changes have increased pressure on resources required to meet the growing demand for food and changing dietary preferences. The increasing demand for animal protein is concerning and raises questions regarding sustainability due to its environmental impact. Subsequently, scientists seek alternative proteins, such as microbial proteins (MPs), as an environmentally friendly choice.

View Article and Find Full Text PDF

Returning raw straw to the soil can significantly elevate soil methylmercury (MeHg) and crop mercury (Hg) levels, underscoring the need to investigate safer approaches to straw utilization in mercury-contaminated regions. In this study, rice straw underwent anaerobic fermentation with the addition of sulfate, and the resulting fermentation products were utilized in a pot experiment involving water spinach to assess the impact of anaerobically fermented straw return on soil Hg methylation and its bioaccumulation. Findings revealed that the addition of sulfate during straw fermentation markedly increased the fermentation degree of the products, and sulfate was converted into organic sulfur-containing ligands that can functionalize the fermentation residuals.

View Article and Find Full Text PDF

The complex structure of the plant cell wall makes it difficult to use the biomass produced by biosynthesis. For this reason, the search for new strains of microorganisms capable of efficiently degrading fiber is a topic of interest. For these reasons, the present study aimed to evaluate both the microbiological and enzymatic characteristics of the fungus L7strain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!