Background: The abductor pollicis longus (APL) is classically described as inserting on the base of the first metacarpal. This study analyzed APL insertional anatomy and quantified the size of various elements of the extensor side of the thumb to determine associations with size and function.
Methods: Twenty-four formalin-preserved upper limbs were dissected. The insertional anatomy of the APL, extensor pollicis brevis, and extensor pollicis longus were characterized, and the capacity of APL tendon slips to perform palmar abduction of the first digit was quantified based on slip size and insertion.
Results: The mean number of APL tendon slips observed was 2.3. Abductor pollicis longus insertion sites included the base of the first metacarpal, trapezium, abductor pollicis brevis, and opponens pollicis. Only 4 specimens had a solitary metacarpal slip, while 83% of specimens had insertions onto at least 1 thenar muscle. A total of 62.5% of APL tendons exhibited some form of branching that we categorized into "Y" and "Z" patterns. In assessing palmar abduction capacity, we found that APL tendon slips inserting into the base of the first metacarpal were larger in cross-sectional area than nonmetacarpal slips and reproduced complete palmar abduction of the digit in the absence of nonmetacarpal slips. The abduction capacity of APL tendon slips was not correlated to the cross-sectional area.
Conclusions: There is significant variability in APL tendon slips, branching patterns, and insertional anatomy. These findings provide further understanding of the function of the APL and its surgical implications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9806545 | PMC |
http://dx.doi.org/10.1177/1558944721999734 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!