Background: Keloid scarring is a pathologic proliferation of scar tissue that often causes pruritus, pain, and disfigurement. Keloids can be difficult to treat and have a high risk of recurrence. Recent studies have shown promising results in the treatment of cutaneous metastases with intralesional calcium combined with electroporation (calcium electroporation). As calcium electroporation has shown limited side effects it has advantages when treating benign keloid lesions, and on this indication we performed a phase I study.
Methods: Patients with keloids were treated with at least 1 session of calcium electroporation and followed up for 2 years. Calcium was administered intralesionally (220 mM) followed by the application of eight 100-µs pulses (400 V) using linear-array electrodes and Cliniporator (IGEA, Italy). Treatment efficacy was evaluated clinically (size, shape, erythema), by patient self-assessment (pruritus, pain, other) and assessed histologically.
Results: Six patients were included in this small proof of concept study. Treatment was well tolerated, with all patients requesting further treatment. Two out of 6 patients experienced a decrease in keloid thickness over 30%. A mean reduction of 11% was observed in volume size, and a mean flattening of 22% was observed (not statistically significant). Five out of 6 patients reported decreased pain and pruritus. No serious adverse effects or recurrences were observed over a mean follow-up period of 338 days.
Conclusion: In this first phase I clinical study on calcium electroporation for keloids, treatment was found to be safe with minor side effects. Overall, patients experienced symptom relief, and in some patients keloid thickness was reduced.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619780 | PMC |
http://dx.doi.org/10.1159/000514307 | DOI Listing |
Sensors (Basel)
December 2024
Mines Saint-Etienne, Centre CMP, Département BEL, F-13541 Gardanne, France.
The primary method of treatment for patients suffering from drug-resistant focal-onset epilepsy is resective surgery, which adversely impacts neurocognitive function. Radio frequency (RF) ablation and laser ablation are the methods with the most promise, achieving seizure-free rates similar to resection but with less negative impact on neurocognitive function. However, there remains a number of concerns and open technical questions about these two methods of thermal ablation, with the primary ones: (1) heating; (2) hemorrhage and bleeding; and (3) poor directionality.
View Article and Find Full Text PDFBiomed Pharmacother
December 2024
Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw 50-556, Poland.
Calcium electroporation (CaEP) is an efficient approach for ovarian cancer treatment. It causes cell death by introducing elevated levels of calcium into cells. In this work, the research focused on two types of cell lines: CHO-K1, representing normal ovary cells, and OvBH-1, representing ovarian clear carcinoma cells.
View Article and Find Full Text PDFBr J Radiol
November 2024
Department of Diagnostic and Interventional Radiology, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, LS9 7TF.
Reversible electroporation refers to the use of high voltage electrical pulses on tissues to increase cell membrane permeability. It allows targeted delivery of high concentrations of chemotherapeutic agents including cisplatin and bleomycin, a process known as electrochemotherapy (ECT). It can also be used to deliver toxic concentrations of calcium and gene therapies that stimulate an anti-tumour immune response.
View Article and Find Full Text PDFBiomed Pharmacother
December 2024
Wroclaw Medical University, Faculty of Pharmacy, Department of Molecular and Cellular Biology, Wroclaw, Poland; Medical University Hospital, Wroclaw, Poland. Electronic address:
Calcium electroporation (CaEP) involves the combination of calcium ions with electroporation, which is induced by pulsed electric fields (PEFs). This study explores the application of high-frequency unipolar nanosecond pulsed electric fields (nsPEFs: 8-14 kV/cm, 200 ns, 10 kHz, 100 kHz, 1 MHz repetition frequency pulse bursts, n = 100) and their potential in inhibiting lung cancer cell growth. As a reference, standard microsecond range parametric protocols were used (100 µs x 8 pulses).
View Article and Find Full Text PDFSci Rep
October 2024
Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!