Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Objective: The main objective of the work is to examine the curvature effects of stenosis/dilatation region pertaining to left coronary artery. The hemodymamic features during the cardiac cycle is thoroughly examined.
Methods: A numerical fluid structure interaction model incorporating multi- layered elastic artery wall, non-Newtonian blood viscosity and pulsating boundary conditions is developed. The composite arterial wall consists of a thin layer tunica intima, atheroma and a thick wall. Higher stiffness of atheroma is captured by using higher Young's modulus. The CFD and FSI models are validated with available experimental and analytical data. Computations are done with five different non-Newtonian models and arterial wall with various elasticity levels. The local and time averaged WSS, velocity contours downstream of stenosis, wall pressure and pressure drop during various phases of cardiac cycle are provided in detail.
Results: The influence of non-Newtonian effects of blood viscosity is found to be significant especially at stenosis regions. The flexible wall caused wall deformation and the associated flow and pressure wave propagation affecting WSS and pressure drop compared to the rigid wall. Flow recirculation is noticed at stenosis downstream locations and its strength increases with increased severity of the stenosis. A stenosis is characterised by a sudden drop in wall pressure and a slower two stage recovery during peak velocity periods of the cardiac cycle.
Conclusions: The pressure drop, local WSS at stenosis centre, and radial velocity increase are significantly higher for stenosis cases and the effect is severe during peak diastole. The variation in hemodynamic parameters is found to be less significant for dilatation. Significantly lower WSS is noticed for the recirculation regions downstream of stenosis which can enhance the tendency for monocytes to attach to the endothelium. The radius of curvature of the stenosis is found to be the most sensitive parameter affecting the hemodynamic characteristics rather than the detailed geometry of the stenosis. The main effect of variation of artery wall stiffness is noted at recirculation regions present downstream of stenosis. The results from the study may be useful for predicting wall shear stress signatures associated with stenosis/dilatation changes and the management of specific cases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2021.106052 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!