A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Viscoelasticity Enhances Nanometer-Scale Slip in Gigahertz-Frequency Liquid Flows. | LitMetric

Viscoelasticity Enhances Nanometer-Scale Slip in Gigahertz-Frequency Liquid Flows.

J Phys Chem Lett

ARC Centre of Excellence in Exciton Science, School of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia.

Published: April 2021

The interaction between flowing liquids and solid surfaces underpins many physical phenomena and technologies, such as the ability of an airfoil to generate lift and the mixing of liquids for industrial applications. These phenomena are often described using the Navier-Stokes equations and the no-slip boundary condition: the assumption that the liquid immediately adjacent to a solid surface does not move relative to the surface. Herein, we observe violation of the no-slip condition with strong enhancement of slip due to intrinsic viscoelasticity of the bulk liquid. This is achieved by measuring the 20 GHz acoustic vibrations of gold nanoparticles in glycerol/water mixtures, for which the underlying physics is explored using rigorous, theoretical models. The reported enhancement of slip revises current understanding of ultrafast liquid flows, with implications for technologies ranging from membrane filtration to nanofluidic devices and biomolecular sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.1c00600DOI Listing

Publication Analysis

Top Keywords

liquid flows
8
enhancement slip
8
viscoelasticity enhances
4
enhances nanometer-scale
4
nanometer-scale slip
4
slip gigahertz-frequency
4
liquid
4
gigahertz-frequency liquid
4
flows interaction
4
interaction flowing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!