Pandemics have historically had a significant impact on economic inequality. However, official inequality statistics are only available at low frequency and with considerable delay, which challenges policymakers in their objective to mitigate inequality and fine-tune public policies. We show that using data from bank records it is possible to measure economic inequality at high frequency. The approach proposed in this paper allows measuring, timely and accurately, the impact on inequality of fast-unfolding crises, like the COVID-19 pandemic. Applying this approach to data from a representative sample of over three million residents of Spain we find that, absent government intervention, inequality would have increased by almost 30% in just one month. The granularity of the data allows analyzing with great detail the sources of the increases in inequality. In the Spanish case we find that it is primarily driven by job losses and wage cuts experienced by low-wage earners. Government support, in particular extended unemployment insurance and benefits for furloughed workers, were generally effective at mitigating the increase in inequality, though less so among young people and foreign-born workers. Therefore, our approach provides knowledge on the evolution of inequality at high frequency, the effectiveness of public policies in mitigating the increase of inequality and the subgroups of the population most affected by the changes in inequality. This information is fundamental to fine-tune public policies on the wake of a fast-moving pandemic like the COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012053 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0249121 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!