Bacterial Analogs to Cholesterol Affect Dimerization of Proteorhodopsin and Modulates Preferred Dimer Interface.

J Chem Theory Comput

C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States.

Published: April 2021

Hopanoids, the bacterial analogues of sterols, are ubiquitous in bacteria and play a significant role in organismal survival under stressful environments. Unlike sterols, hopanoids have a high degree of variation in the size and chemical nature of the substituent attached to the ring moiety, leading to different effects on the structure and dynamics of biological membranes. While it is understood that hopanoids can indirectly tune membrane physical properties, little is known on the role that hopanoids may play in affecting the organization and behavior of bacterial membrane proteins. In this work we used coarse-grained molecular dynamics simulations to characterize the effects of two hopanoids, diploptene (DPT) and bacteriohopanetetrol (BHT), on the oligomerization of proteorhodopsin (PR) in a model membrane composed of 1-palmitoyl-2-oleoyl--glycero-3-phophoethanolamine (POPE) and 1-palmitoyl-2-oleoyl--3-phosphoglycerol (POPG). PR is a bacterial membrane protein that functions as a light-activated proton pump. We chose PR based on its ability to adopt a distribution of oligomeric states in different membrane environments. Furthermore, the efficiency of proton pumping in PR is intimately linked to its organization into oligomers. Our results reveal that both BHT and DPT indirectly affect dimerization by tuning membrane properties in a fashion that is concentration-dependent. Variation in their interaction with PR in the membrane-embedded and the cytoplasmic regions leads to distinctly different effects on the plasticity of the dimer interface. BHT has the ability to intercalate between monomers in the dimeric interface, whereas DPT shifts dimerization interactions via packing of the interleaflet region of the membrane. Our results show a direct relationship between hopanoid structure and lateral organization of PR, providing a first glimpse at how these bacterial analogues to eukaryotic sterols produce very similar biophysical effects within the cell membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.0c01174DOI Listing

Publication Analysis

Top Keywords

affect dimerization
8
dimer interface
8
bacterial analogues
8
membrane
8
bacterial membrane
8
bacterial
5
hopanoids
5
bacterial analogs
4
analogs cholesterol
4
cholesterol affect
4

Similar Publications

Trousseau's syndrome is a thromboembolic disorder associated with malignancies, with cerebral infarction and hemorrhage representing common central nervous system complications in patients with cancer. This report details the diagnosis and treatment of a patient with gastric adenocarcinoma at our institution who concurrently developed cerebral infarction and subarachnoid hemorrhage. We performed a comprehensive literature review in the Wanfang and PubMed databases, searching for relevant studies on Trousseau's syndrome, cerebral embolism, and subarachnoid hemorrhage.

View Article and Find Full Text PDF

Background: Marek's disease (MD) is a pathology affecting chickens caused by Marek's disease virus (MDV), an acute transforming alphaherpesvirus of the genus . MD is characterized by paralysis, immune suppression, and the rapid formation of T-cell (primarily CD4+) lymphomas. Over the last 50 years, losses due to MDV infection have been controlled worldwide through vaccination; however, these live-attenuated vaccines are non-sterilizing and potentially contributed to the virulence evolution of MDV field strains.

View Article and Find Full Text PDF

Two Cysteines in Raf Kinase Inhibitor Protein Make Differential Contributions to Structural Dynamics In Vitro.

Molecules

January 2025

Cancer Microenvironment Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea.

As a scaffolding protein, Raf kinase binding protein (RKIP) is involved in a variety of cellular pathways, including the Raf-MEK-ERK-cascade. It acts as a negative regulator by binding to its partners, making it an attractive target in the development of therapeutic strategies for cancer. Despite its structural stability as a monomer, RKIP may form a dimer, resulting in the switching of binding partners.

View Article and Find Full Text PDF

Hepatocyte carcinoma (HCC) is a globally prevalent neoplasm with profound effects on morbidity and mortality rates. This review summarizes the complex interactions between coagulation abnormalities and the pathophysiological mechanisms underlying HCC. Essential coagulation biomarkers, such as P-selectin, thrombomodulin, d-dimer, prothrombin, and von Willebrand factor, are reviewed for their diagnostic, prognostic, and therapeutic significance.

View Article and Find Full Text PDF

Cytosine Methylation Changes the Preferred Cis-Regulatory Configuration of Arabidopsis WUSCHEL-Related Homeobox 14.

Int J Mol Sci

January 2025

College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

The Arabidopsis transcription factor WUSCHEL-related homeobox 14 (AtWOX14) plays versatile roles in plant growth and development. However, its biochemical specificity of DNA binding, its genome-wide regulatory targets, and how these are affected by DNA methylation remain uncharacterized. To clarify the biochemistry underlying the regulatory function of AtWOX14, using the recently developed 5mC-incorporation strategy, this study performed SELEX and DAP-seq for AtWOX14 both in the presence and absence of cytosine methylation, systematically curated 65 motif models and identified 51,039 genomic binding sites for AtWOX14, and examined how 5mC affects DNA binding of AtWOX14 through bioinformatic analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!