Chromite ore processing residues (COPR) are real environmental threats, leading to CrO, i.e., Cr (VI) leaching into groundwater. It is of serious concern as Cr (VI) is proven to be carcinogenic. Here we emphasize the application of novel and eco-friendly chitin functionalized iron-enriched hydroxyapatite nanocomposite (HAP-Fe-Ct) in the remediation of Cr (VI)-contaminated groundwater samples collected from Khan Chandpur, India, where the level of Cr (VI) is found to be 11.7 mg/L in a complex aqueous matrix having 793 mg/L of total dissolved solids. Chitin functionality in the composite has resulted in positive zeta potential at circum-neutral pH, favoring electrostatic attraction of chromate ions and resulting in its bulk surface transport. The HAP-Fe-Ct showed faster kinetics of removal with efficiency (q = 13.9 ± 0.46 mg/g) for Cr (VI). The composite has shown sorption equilibrium and 100% removal of Cr (VI) within 3 h of interaction time in groundwater samples. No Cr (VI) leaching in the acid wash process at pH 3.5 also suggests chromium's strong chemisorption onto nanocomposite. During the interaction in aqueous solutions, the reduced iron (Fe) on the nanocomposite becomes oxidized, suggesting the probable simultaneous reduction of Cr (VI) and its co-precipitation. Continuous column extraction of chromate ions was also efficient in both spiked solutions (39.7 ± 0.04 mg/g) and COPR contaminated water (13.2 ± 0.09 mg/g). Reusability up to three cycles with almost complete Cr (VI) removal may be attributed to surface protonation, new binding sites generation, and electron transfer from Fe core through defects. The study concludes that HAP-Fe-Ct could be utilized for continuous Cr (VI) removal from COPR contaminated complex groundwater matrices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-13549-7 | DOI Listing |
Inorg Chem
January 2025
Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States.
Four new and one previously reported silver 4,4'-vinylenedipyridine (Vpe) coordination polymers were tested as anion exchange materials to assess their potential for pollutant sequestration and compared to analogous silver 4,4'-bipyridine (bipy) coordination polymers. The materials were synthesized using nitrate, tetrafluoroborate, perchlorate, perrhenate, or chromate as the anion to produce cationic coordination polymers with solubilities ranging from 0.0137(7) to 0.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
November 2024
School of Biotechnology and Bioinformatics, D.Y. Patil University, Navi Mumbai, India.
Int J Mol Sci
November 2024
Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia.
The adsorption efficiency of Cr(VI) and anionic textile dyes onto MgAl-layered double hydroxides (LDHs) and MgAl-LDH coated on bio-silica (b-SiO) nanoparticles (MgAl-LDH@SiO) derived from waste rice husks was studied in this work. The material was characterized using field-emission scanning electron microscopy (FE-SEM/EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopic (XPS) techniques. The adsorption capacities of MgAl-LDH@SiO were increased by 12.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2024
Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
Chromium and arsenic are commonly found in water and wastewater as hexavalent chromium, Cr(VI), and inorganic arsenic species, such as pentavalent arsenic, As(V). In aqueous media, both Cr(VI) and As(V) exist predominantly in the form of oxy-anions. In our study, we prepared a polyethylenimine-silica composite material (SiO₂-PEI) as an adsorbent to study the adsorption capacity for chromate and arsenate ions.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2025
Instituto de Ciências Ambientais, Químicas e Farmacêuticas - Depto de Química, Laboratório de Química de Calixarenos, Espectroscopia Molecular e Catálise, Universidade Federal de São Paulo, Rua Prof. Arthur Riedel, 275, CEP 09972-270 Diadema, SP, Brazil. Electronic address:
Chemosensors to detect ions have been increasingly studied to distinguish hazardous and economic species, and detecting and recuperating ions is crucial. Searching for a low-cost technique and better chemosensors, our group presents exciting results, using the UV-Vis technique to evidence the effective interaction between the ligand (1) and the anions F, Ac, and CrO, as well as the NMR titration. Low LOD for these ions (3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!