AI Article Synopsis

  • Adolescence is a crucial period for brain development, with significant changes in structural connectomes observed from childhood to young adulthood, particularly in transmodal regions.
  • These changes include increased connectivity within brain networks and greater segregation, indicating a refinement in how higher-order cognitive functions are organized.
  • The study also links these neural changes to genetic factors and suggests that early brain connectivity patterns can predict intelligence later in life, showing a connection between brain structure and cognitive abilities.

Article Abstract

Adolescence is a critical time for the continued maturation of brain networks. Here, we assessed structural connectome development in a large longitudinal sample ranging from childhood to young adulthood. By projecting high-dimensional connectomes into compact manifold spaces, we identified a marked expansion of structural connectomes, with strongest effects in transmodal regions during adolescence. Findings reflected increased within-module connectivity together with increased segregation, indicating increasing differentiation of higher-order association networks from the rest of the brain. Projection of subcortico-cortical connectivity patterns into these manifolds showed parallel alterations in pathways centered on the caudate and thalamus. Connectome findings were contextualized via spatial transcriptome association analysis, highlighting genes enriched in cortex, thalamus, and striatum. Statistical learning of cortical and subcortical manifold features at baseline and their maturational change predicted measures of intelligence at follow-up. Our findings demonstrate that connectome manifold learning can bridge the conceptual and empirical gaps between macroscale network reconfigurations, microscale processes, and cognitive outcomes in adolescent development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087442PMC
http://dx.doi.org/10.7554/eLife.64694DOI Listing

Publication Analysis

Top Keywords

transmodal regions
8
structural connectome
8
expanding manifold
4
manifold transmodal
4
regions characterizes
4
characterizes adolescent
4
adolescent reconfiguration
4
reconfiguration structural
4
connectome
4
connectome organization
4

Similar Publications

Sensorimotor learning is supported by multiple competing processes that operate concurrently, making it a challenge to elucidate their neural underpinnings. Here, using human functional MRI, we identify 3 distinct axes of connectivity between the motor cortex and other brain regions during sensorimotor adaptation. These 3 axes uniquely correspond to subjects' degree of implicit learning, performance errors and explicit strategy use, and involve different brain networks situated at increasing levels of the cortical hierarchy.

View Article and Find Full Text PDF

Sensory information mainly travels along a hierarchy spanning unimodal to transmodal regions, forming multisensory integrative representations crucial for higher-order cognitive functions. Here, we develop an fMRI based two-dimensional framework to characterize sensory integration based on the anchoring role of the primary cortex in the organization of sensory processing. Sensory magnitude captures the percentage of variance explained by three primary sensory signals and decreases as the hierarchy ascends, exhibiting strong similarity to the known hierarchy and high stability across different conditions.

View Article and Find Full Text PDF

Traditional models of human brain activity often represent it as a network of pairwise interactions between brain regions. Going beyond this limitation, recent approaches have been proposed to infer higher-order interactions from temporal brain signals involving three or more regions. However, to this day it remains unclear whether methods based on inferred higher-order interactions outperform traditional pairwise ones for the analysis of fMRI data.

View Article and Find Full Text PDF

Understanding neural mechanisms of consciousness remains a challenging question in neuroscience. A central debate in the field concerns whether consciousness arises from global interactions that involve multiple brain regions or focal neural activity, such as in sensory cortex. Additionally, global theories diverge between the Global Neuronal Workspace (GNW) hypothesis, which emphasizes frontal and parietal areas, and the Integrated Information Theory (IIT), which focuses on information integration within posterior cortical regions.

View Article and Find Full Text PDF

Macroscale functional gradient techniques provide a continuous coordinate system that extends from unimodal regions to transmodal higher-order networks. However, the alterations of these functional gradients in AD and their correlations with cognitive terms and gene expression profiles remain to be established. In the present study, we directly studied the functional gradients with functional MRI data from seven scanners.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!