A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of Copresence of Zerovalent Iron and Sulfate Reducing Bacteria on Reductive Dechlorination of Trichloroethylene. | LitMetric

Effect of Copresence of Zerovalent Iron and Sulfate Reducing Bacteria on Reductive Dechlorination of Trichloroethylene.

Environ Sci Technol

Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, Texas 79409, United States.

Published: April 2021

Sulfur amendment of zerovalent iron (ZVI) materials has been shown to improve the reactivity and selectivity of ZVI toward a select group of organohalide contaminants in groundwater, most notably trichloroethene (TCE). In previous studies, chemical or mechanochemical sulfidation methods were used; however, the potential of using sulfate-reducing bacteria (SRB) to enable sulfur amendment has not been closely examined. In this study, lab-synthesized nanoscale ZVI (nZVI) and Peerless iron particles (ZVI) were treated in a sulfate-reducing monoculture () and an enrichment culture derived from freshwater sediments (AMR-1) prior to reactivity assessments with TCE as the model contaminant. ZVI conditioned in both cultures exhibited higher dechlorination efficiencies compared to unamended ZVIs. Remarkably, nZVI and ZVI exposed to AMR-1 attained similar TCE dechlorination rates as their counterparts receiving chemical sulfidation (i.e., S-nZVI) using previously reported method. Product distribution data show that, in the SRB-ZVI system, abiotic dechlorination is the dominant TCE reduction pathway. In addition to dissolved sulfide, biogenic or synthesized FeS particles can enhance nZVI reactivity even as nZVI and FeS were not in direct contact, implying that SRB may influence the reactivity of ZVI via multiple mechanisms in different remediation situations. A shift in Archaea abundance in AMR-1 with nZVI amendment was observed but not with ZVI. Overall, the synergy exhibited in the SRB-ZVI system may offer a valuable remediation strategy to overcome limitations of standalone biological or abiotic dechlorination approaches for chlorinated solvent abatement.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.0c07702DOI Listing

Publication Analysis

Top Keywords

zerovalent iron
8
sulfur amendment
8
zvi
8
srb-zvi system
8
abiotic dechlorination
8
dechlorination
5
nzvi
5
copresence zerovalent
4
iron sulfate
4
sulfate reducing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!