Kudzu plants in the subfamily sphenoideae of Leguminosae are commonly used herbs in China, Japan, Korea, India and Thailand, with a long history of medicinal use. They are recorded in Chinese Pharmacopoeia, Japanese Pharmacopeia, Korea Pharmacopeia, Ayurveda Pharmacopoeia of India and Flora of Thailand. There are 15-20 species of Pueraria in the world, including 7 species and 2 varieties in China. At present, there are 6 species with medicinal value, such as Pueraria lobata and P. thomsonii. The main chemical components of the genus are isoflavones, flavonoids, terpenes, steroids, coumarins, puerarin glycosides and benzopyrans. A total of 240 compounds have been isolated and identified from this genus, and their pharmacological effects mainly include improvement of the cardiovascular system, antioxidant, hypoglycemic, antipyretic, anti-inflammatory, anti-alcoholic and estrogen-like effects. In this study, chemical constituents and pharmacological activities of Pueraria at home and abroad were systematically summarized, in order to provide references for the material basis, quality control and further development of Pueraria genus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.19540/j.cnki.cjcmm.20201124.601 | DOI Listing |
Front Pharmacol
January 2025
Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
The natural world is a vast reservoir of exceptionally varied and inventive chemical compositions. Natural products are used as initial compounds to create combinatorial libraries by targeted modifications and then by analyzing their structure-activity connections. This stage is regarded as a crucial milestone in drug discovery and development.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Archaeology and Anthropology, School of Humanities, University of Chinese Academy of Sciences, 100049, Beijing, China. Electronic address:
Background: Pottery lipid residue analysis has been extensively practiced worldwide as an important part of archaeometry studies, but in some cases, the complexity of archaeological residue cannot be fully revealed by one-dimensional gas chromatography (1D GC) separation. Although the development of comprehensive two-dimensional gas chromatography (GCxGC) has offered another way to achieve better separation and higher resolution, GCxGC separation has rarely been applied to pottery residue analysis. Clearly, GCxGC separation needs to be explored to examine and scrutinize the complexity of pottery lipid residue profile as well as rapid data treatment workflow.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Analytical Chemistry, Faculty of Chemistry, Universitat de València, C/ Dr. Moliner 50, 46100, Burjassot, Spain. Electronic address:
Background: Developing analytical methods for Traditional Medicine products by liquid chromatography is challenging due to their chemical complexity and the lack of analytical standards for numerous, unidentified constituents. Regulatory agencies recommend chromatographic fingerprint analysis for quality evaluation, relying on peak detection to ensure resolution. Conventional modelling struggles to optimise experimental conditions for such complex samples.
View Article and Find Full Text PDFRev Neurosci
January 2025
Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
Essentially, the blood-brain barrier (BBB) serves as a line of demarcation between neural tissues and the bloodstream. A unique and protective characteristic of the blood-brain barrier is its ability to maintain cerebral homeostasis by regulating the flux of molecules and ions. The inability to uphold proper functioning in any of these constituents leads to the disruption of this specialized multicellular arrangement, consequently fostering neuroinflammation and neurodegeneration.
View Article and Find Full Text PDFToxicol Pathol
January 2025
Premier Laboratory, LLC, Longmont, Colorado, USA.
Hematoxylin and eosin (H&E) staining is a suitable approach for detecting substantial structural changes in neural tissues but is less sensitive for identifying subtle alterations to subcellular structures and various chemical constituents, including myelin. Neurohistological methods to better evaluate myelin integrity by light microscopy include acidophilic dyes (eg, eriochrome cyanine R, toluidine blue [used with hard plastic sections]); lipoprotein-binding dyes (eg, Luxol fast blue [LFB], Weil's iron hematoxylin); lipid impregnation with metals (eg, Marchi's, which uses osmium tetroxide for en bloc staining before embedding); and immunohistochemical (IHC) methods to highlight various antigens (eg, myelin basic protein [MBP] and peripheral myelin protein 22 [PMP22]). Some IHC methods reveal enhanced marker expression in damaged myelin (eg, matrix metalloproteinase-9 [MMP9], S100).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!