Background: Occurrence of multiple biotic stresses on crop plants result in drastic yield losses which may have severe impact on the food security. It is a challenge to design strategies for simultaneous management of these multiple stresses. Hence, establishment of innovative approaches that aid in their management is critical. Here, we have introgressed a micro RNA-induced gene silencing (MIGS) based combinatorial gene construct containing seven target gene sequences of cotton leaf curl disease (CLCuD), cotton leaf hopper (Amrasca biguttula biguttula), cotton whitefly (Bemisia tabaci) and root-knot nematode (Meloidogyne incognita).

Results: Stable transgenic lines of Nicotiana benthamiana were generated with the T-DNA harboring Arabidopsis miR173 target site fused to fragments of Sec23 and ecdysone receptor (EcR) genes of cotton leaf hopper and cotton whitefly. It also contained C2/replication associated protein (C2/Rep) and C4 (movement protein) along with βC1 gene of betasatellite to target CLCuD, and two FMRFamide-like peptide (FLP) genes, Mi-flp14 and Mi-flp18 of M. incognita. These transgenic plants were assessed for the amenability of MIGS approach for pest control by efficacy evaluation against M. incognita. Results showed successful production of small interfering RNA (siRNA) through the tasiRNA (trans-acting siRNA) pathway in the transgenic plants corresponding to Mi-flp18 gene. Furthermore, we observed reduced Mi-flp14 and Mi-flp18 transcripts (up to 2.37 ± 0.12-fold) in females extracted from transgenic plants. The average number of galls, total endoparasites, egg masses and number of eggs per egg mass reduced were in the range 27-62%, 39-70%, 38-65% and 34-49%, respectively. More importantly, MIGS transgenic plants showed 80% reduction in the nematode multiplication factor (MF).

Conclusion: This study demonstrates successful validation of the MIGS approach in the model plant, N. benthamiana for efficacy against M. incognita, as a prelude to translation to cotton. © 2021 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.6384DOI Listing

Publication Analysis

Top Keywords

transgenic plants
16
cotton leaf
12
micro rna-induced
8
rna-induced gene
8
gene silencing
8
model plant
8
nicotiana benthamiana
8
leaf hopper
8
cotton whitefly
8
mi-flp14 mi-flp18
8

Similar Publications

Agrobacterium-mediated gene transformation method is a vital molecular biology technique employed to develop transgenic plants. Plants are genetically engineered to develop disease-free varieties, knock out unsettling traits for crop improvement, or incorporate an antigenic protein to make the plant a green factory for edible vaccines. The method's robustness was validated through successful transformations, demonstrating its effectiveness as a standard approach for researchers working in plant biotechnology.

View Article and Find Full Text PDF

An endoplasmic reticulum-localized Cu transporter, PhHMA5II1, interacts with copper chaperones and plays an important role in Cu detoxification in petunia. Copper (Cu) is an essential element for plant growth but toxic when present in excess. In this study we present the functional characterization of a petunia (Petunia hybrida) P-type heavy-metal ATPases (HMAs), PhHMA5II1.

View Article and Find Full Text PDF

The bHLH transcription factor DlbHLH68 positively regulates DlSPS1 expression to promote sucrose biosynthesis in longan.

Int J Biol Macromol

January 2025

College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:

Sucrose is an important factor affecting plant growth and fruit quality, but the molecular regulatory mechanism of sucrose biosynthesis in longan is not yet understood. Here, we characterized a transcription factor, DlbHLH68, positively regulates sucrose accumulation in longan. Subcellular localization and transcriptional activity analysis indicated that DlbHLH68 is a nuclear transcriptional activator.

View Article and Find Full Text PDF

WD40 proteins PaTTG1 interact with both bHLH and MYB to regulate trichome formation and anthocyanin biosynthesis in Platanus acerifolia.

Plant Sci

January 2025

Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, AnHui Agricultural University, HeFei 230036, PR China. Electronic address:

Trichome development and anthocyanin accumulation are regulated by a complex regulatory network, the MBW complexes consist of MYB, bHLH, and WD40 transcription factors. In this study, two sequences, named PaTTG1.1, and PaTTG1.

View Article and Find Full Text PDF

Confers Iron Homeostasis Under Iron Deficiency in .

Int J Mol Sci

January 2025

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.

Iron stress adversely impacts plants' growth and development. Transcription factors (TFs) receive stress signals and modulate plant tolerance by influencing the expression of related functional genes. In the present study, we investigated the role of an apple bHLH transcription factor in the tolerance to iron stresses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!