The Motor Neuron-Like Cell Line NSC-34 and Its Parent Cell Line N18TG2 Have Glycogen that is Degraded Under Cellular Stress.

Neurochem Res

Interfaculty Institute for Biochemistry, University of Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany.

Published: June 2021

Brain glycogen has a long and versatile history: Primarily regarded as an evolutionary remnant, it was then thought of as an unspecific emergency fuel store. A dynamic role for glycogen in normal brain function has been proposed later but exclusively attributed to astrocytes, its main storage site. Neuronal glycogen had long been neglected, but came into focus when sensitive technical methods allowed quantification of glycogen at low concentration range and the detection of glycogen metabolizing enzymes in cells and cell lysates. Recently, an active role of neuronal glycogen and even its contribution to neuronal survival could be demonstrated. We used the neuronal cell lines NSC-34 and N18TG2 and could demonstrate that they express the key-enzymes of glycogen metabolism, glycogen phosphorylase and glycogen synthase and contain glycogen which is mobilized on glucose deprivation and elevated potassium concentrations, but not by hormones stimulating cAMP formation. Conditions of metabolic stress, namely hypoxia, oxidative stress and pH lowering, induce glycogen degradation. Our studies revealed that glycogen can contribute to the energy supply of neuronal cell lines in situations of metabolic stress. These findings shed new light on the so far neglected role of neuronal glycogen. The key-enzyme in glycogen degradation is glycogen phosphorylase. Neurons express only the brain isoform of the enzyme that is supposed to be activated primarily by the allosteric activator AMP and less by covalent phosphorylation via the cAMP cascade. Our results indicate that neuronal glycogen is not degraded upon hormone action but by factors lowering the energy charge of the cells directly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8084819PMC
http://dx.doi.org/10.1007/s11064-021-03297-yDOI Listing

Publication Analysis

Top Keywords

glycogen
17
neuronal glycogen
16
glycogen degraded
8
glycogen long
8
role neuronal
8
neuronal cell
8
cell lines
8
glycogen phosphorylase
8
metabolic stress
8
glycogen degradation
8

Similar Publications

Background: Pompe disease is a glycogen storage disease primarily affecting striated muscles. Despite its main manifestation in muscles, patients with Pompe disease may exhibit non-muscle symptoms, such as hearing loss, suggesting potential involvement of sensory organs or the nervous system due to glycogen accumulation.

Aims: This study aimed to evaluate the presence of concomitant small and large fiber neuropathy in patients with Pompe disease.

View Article and Find Full Text PDF

Light intensity-regulated glycogen synthesis and pollutant removal in microalgal-bacterial granular sludge for wastewater treatment.

Water Res

December 2024

Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.

As light intensity plays a pivotal role in the microalgal-bacterial granular sludge (MBGS) process, understanding its impact on system performance and energy dynamics is essential. This study investigated the effects of varying light intensities (20, 100, 200, and 300 μ mol/m²/s) on the performance of MBGS in urban wastewater treatment, with a particular focus on glycogen accumulation and pollutant removal. The results demonstrated that light intensity significantly influenced microbial community structure, glycogen accumulation, and pollutant removal efficiency.

View Article and Find Full Text PDF

Spatial stable isotope tracing metabolic imaging is a cutting-edge technique designed to investigate tissue-specific metabolic functions and heterogeneity. Traditional matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) techniques often struggle with low coverage of low-molecular-weight (LMW) metabolites, which are often crucial for spatial metabolic studies. To address this, we developed a high-coverage spatial isotope tracing metabolic method that incorporates optimized matrix selection, sample preparation protocols, and enhanced post-ionization (MALDI2) techniques.

View Article and Find Full Text PDF

Rice-fish farming is an ancient and enduring aquaculture model in China. This study aimed to assess the variations in digestive enzymes, antioxidant properties, glucose metabolism, and nutritional content between reared in paddy fields and ponds. Notably, the levels of amylase and trypsin in from rice paddies were considerably higher compared to those from ponds.

View Article and Find Full Text PDF

Individuals with metabolic syndrome have a high risk of developing cardiovascular disorders that is closely tied to visceral adipose tissue dysfunction, as well as an altered interaction between adipose tissue and the cardiovascular system. In metabolic syndrome, adipose tissue dysfunction is associated with increased hypertrophy, reduced vascularization, and hypoxia of adipocytes, leading to a pro-oxidative and pro-inflammatory environment. Among the pathways regulating adipose tissue homeostasis is the wingless-type mammary tumor virus integration site family (Wnt) signaling pathway, with both its canonical and non-canonical arms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!