Zinc titanates are compounds that have shown great application versatility, including in the field of semiconductors. Solid state reactions, the polymeric precursor method and the hydrothermal method are the most mentioned synthesis of these compounds in the literature. In the present work, we use microwave assisted hydrothermal method (MAH) to synthesize zinc titanate and evaluate its potential for solar cell applications through structural and optical characterization techniques. The synthesized samples were also subjected to a variable temperature heat treatment in the range of 500 °C-800 °C. The analysis showed that the crystallization of the material starts at 500 °C and that samples submitted to temperatures of 600 °C-800 °C showed the formation of two phases of zinc titanates, being a cubic phase of ZnTiO, considered rare in the literature, predominant up to a temperature of 800 °C. The optical characterization, based on the techniques of photoluminescence spectroscopy and UV-Visible spectroscopy, showed that the photoluminescent activity and the energy of the band gap increased with the increase of the temperature of the heat treatment, having the highest response in 700 °C, facts that can be linked to the predominant formation of the cubic phase of ZnTiO and simultaneous of the cubic and rhombohedral phases of ZnTiO at 700 and 800 °C. Finally, we highlight as the most important results, the fact that it was possible to obtain these titanates at a temperature lower than that reported in the literature, and that the heat-treated sample at 500 °C is the one with the lowest energy expenditure to be synthesized and the one with the greatest potential for application in dye-sensitized solar cells (DSSC's).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7988328PMC
http://dx.doi.org/10.1016/j.heliyon.2021.e06521DOI Listing

Publication Analysis

Top Keywords

zinc titanates
12
hydrothermal method
12
microwave assisted
8
assisted hydrothermal
8
optical characterization
8
temperature heat
8
heat treatment
8
°c-800 °c
8
500 °c
8
cubic phase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!