Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41576-021-00358-4 | DOI Listing |
iScience
January 2025
Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
ETV2/ER71, an ETS (E-twenty six) transcription factor, is critical for hematopoiesis and vascular development. However, research about the molecular mechanisms behind ETV2-mediated gene transcription is limited. Herein, we demonstrate that ETV2 and KDM4A, an H3K9 demethylase, regulate hematopoietic and endothelial genes.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.
Receptor activator of nuclear factor kappa-B ligand (RANKL) initiates a complex signaling cascade that is crucial for inducing osteoclast differentiation and activation. RANKL-induced signaling has been analyzed in detail, and the involvement of TNF receptor-associated factor 6 (TRAF6), calmodulin-dependent protein kinase (CaMK), NF-κB, mitogen-activated protein kinase (MAPK), activator protein-1 (AP-1), and molecules that contain an immunoreceptor tyrosine-based activation motif (ITAM) has been reported. However, the precise molecular steps that regulate RANKL signaling remain largely unknown.
View Article and Find Full Text PDFDev Cell
January 2025
Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China. Electronic address:
Cleavage-stage arrest in human embryos substantially limits the success rate of infertility treatment, with maternal-to-zygotic transition (MZT) abnormalities being a potential contributor. However, the underlying mechanisms and regulators remain unclear. Here, by performing allelic transcriptome analysis on human preimplantation embryos, we accurately quantified MZT progression by allelic ratio and identified a fraction of 8-cell embryos, at the appropriate developmental time point and exhibiting normal morphology, were in transcriptionally arrested status.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.
Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.
View Article and Find Full Text PDFNat Genet
January 2025
Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Members of the KMT2C/D-KDM6A complex are recurrently mutated in urothelial carcinoma and in histologically normal urothelium. Here, using genetically engineered mouse models, we demonstrate that Kmt2c/d knockout in the urothelium led to impaired differentiation, augmented responses to growth and inflammatory stimuli and sensitization to oncogenic transformation by carcinogen and oncogenes. Mechanistically, KMT2D localized to active enhancers and CpG-poor promoters that preferentially regulate the urothelial lineage program and Kmt2c/d knockout led to diminished H3K4me1, H3K27ac and nascent RNA transcription at these sites, which leads to impaired differentiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!