A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Discovery of novel antituberculosis agents among 3-phenyl-5-(1-phenyl-1H-[1,2,3]triazol-4-yl)-[1,2,4]oxadiazole derivatives targeting aminoacyl-tRNA synthetases. | LitMetric

Antibiotic resistance is a major problem of tuberculosis treatment. This provides the stimulus for the search of novel molecular targets and approaches to reduce or forestall resistance emergence in Mycobacterium tuberculosis. Earlier, we discovered a novel small-molecular inhibitor among 3-phenyl-5-(1-phenyl-1H-[1,2,3]triazol-4-yl)-[1,2,4]oxadiazoles targeting simultaneously two enzymes-mycobacterial leucyl-tRNA synthetase (LeuRS) and methionyl-tRNA synthetase (MetRS), which are promising molecular targets for antibiotic development. Unfortunately, the identified inhibitor does not reveal antibacterial activity toward M. tuberculosis. This study aims to develop novel aminoacyl-tRNA synthetase inhibitors among this chemical class with antibacterial activity toward resistant strains of M. tuberculosis. We performed molecular docking of the library of 3-phenyl-5-(1-phenyl-1H-[1,2,3]triazol-4-yl)-[1,2,4]oxadiazole derivatives and selected 41 compounds for investigation of their inhibitory activity toward MetRS and LeuRS in aminoacylation assay and antibacterial activity toward M. tuberculosis strains using microdilution assay. In vitro screening resulted in 10 compounds active against MetRS and 3 compounds active against LeuRS. Structure-related relationships (SAR) were established. The antibacterial screening revealed 4 compounds active toward M. tuberculosis mono-resistant strains in the range of concentrations 2-20 mg/L. Among these compounds, only one compound 27 has significant enzyme inhibitory activity toward mycobacterial MetRS (IC = 148.5 µM). The MIC for this compound toward M. tuberculosis H37Rv strain is 12.5 µM. This compound is not cytotoxic to human HEK293 and HepG2 cell lines. Therefore, 3-phenyl-5-(1-phenyl-1H-[1,2,3]triazol-4-yl)-[1,2,4]oxadiazole derivatives can be used for further chemical optimization and biological research to find non-toxic antituberculosis agents with a novel mechanism of action.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010095PMC
http://dx.doi.org/10.1038/s41598-021-86562-yDOI Listing

Publication Analysis

Top Keywords

3-phenyl-5-1-phenyl-1h-[123]triazol-4-yl-[124]oxadiazole derivatives
12
antibacterial activity
12
compounds active
12
antituberculosis agents
8
molecular targets
8
inhibitory activity
8
tuberculosis
5
activity
5
compounds
5
discovery novel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!