Neural silences can be localized rapidly using noninvasive scalp EEG.

Commun Biol

Electrical and Computer Engineering Department, Carnegie Mellon University, Pittsburgh, PA, USA.

Published: March 2021

A rapid and cost-effective noninvasive tool to detect and characterize neural silences can be of important benefit in diagnosing and treating many disorders. We propose an algorithm, SilenceMap, for uncovering the absence of electrophysiological signals, or neural silences, using noninvasive scalp electroencephalography (EEG) signals. By accounting for the contributions of different sources to the power of the recorded signals, and using a hemispheric baseline approach and a convex spectral clustering framework, SilenceMap permits rapid detection and localization of regions of silence in the brain using a relatively small amount of EEG data. SilenceMap substantially outperformed existing source localization algorithms in estimating the center-of-mass of the silence for three pediatric cortical resection patients, using fewer than 3 minutes of EEG recordings (13, 2, and 11mm vs. 25, 62, and 53 mm), as well for 100 different simulated regions of silence based on a real human head model (12 ± 0.7 mm vs. 54 ± 2.2 mm). SilenceMap paves the way towards accessible early diagnosis and continuous monitoring of altered physiological properties of human cortical function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010113PMC
http://dx.doi.org/10.1038/s42003-021-01768-0DOI Listing

Publication Analysis

Top Keywords

neural silences
12
noninvasive scalp
8
regions silence
8
silences localized
4
localized rapidly
4
rapidly noninvasive
4
eeg
4
scalp eeg
4
eeg rapid
4
rapid cost-effective
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!