Exploring spatial organization and relationship of diverse biomolecules within cellular nanoenvironments is important to elucidate the fundamental processes of life. However, it remains methodologically challenging. Herein, we report a molecular recognition mechanism cellular macromolecules-tethered DNA walking indexing (Cell-TALKING) to probe the nanoenvironments containing diverse chromatin modifications. As an example, we characterize the nanoenvironments of three DNA modifications around one histone posttranslational modification (PTM). These DNA modifications in fixed cells are labeled with respective DNA barcoding probes, and then the PTM site is tethered with a DNA walking probe. Cell-TALKING can continuously produce cleavage records of any barcoding probes nearby the walking probe. New 3'-OH ends are generated on the cleaved barcoding probes to induce DNA amplification for downstream detections. Combining fluorescence imaging, we identify various combinatorial chromatin modifications and investigate their dynamic changes during cell cycles. We also explore the nanoenvironments in different cancer cell lines and clinical specimens. In principle, using high-throughput sequencing instead of fluorescence imaging may allow the detection of complex cellular nanoenvironments containing tens of biomolecules such as transcription factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8009891 | PMC |
http://dx.doi.org/10.1038/s41467-021-22284-z | DOI Listing |
Mol Phylogenet Evol
January 2025
HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary.
Here we provide a comprehensive update on the diversity and genetic relatedness of adenoviruses occurring in rodents. Extensive PCR screenings revealed the presence of adenoviral DNA in samples originating from representatives of 17 rodent species from four different suborders of Rodentia. Distinct sequences of 28 different adenoviruses were obtained from the positive samples.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, CA, 94143, USA.
The Nr4a nuclear hormone receptors are transcriptionally upregulated in response to antigen recognition by the T cell receptor (TCR) in the thymus and are implicated in clonal deletion, but the mechanisms by which they operate are not clear. Moreover, their role in central tolerance is obscured by redundancy among the Nr4a family members and by their reported functions in Treg generation and maintenance. Here we take advantage of competitive bone marrow chimeras and the OT-II/RIPmOVA model to show that Nr4a1 and Nr4a3 are essential for the upregulation of Bcl2l11/BIM and thymic clonal deletion by self-antigen.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
Background: Evidence indicates a negative link between glucosamine and age-related cognitive decline and sarcopenia. However, the causal relationship remains uncertain. This study aims to verify whether glucosamine is causally associated with cognitive function and sarcopenia.
View Article and Find Full Text PDFTalanta
April 2025
Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, PR China. Electronic address:
Methotrexate (MTX) is a widely used antimetabolite drug, mainly used in the treatment of a variety of cancer. Given the low therapeutic index and significant individual variability of MTX, it was critical to perform therapeutic drug monitoring (TDM) to minimize the side effects. Here, we designed a rapid and sensitive fluorescence/colorimetric assay for the detection of MTX in diluted human serum.
View Article and Find Full Text PDFAnal Chem
December 2024
State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
Microelectrode- and nanoelectrode-based electrochemistry has become a powerful tool for the in situ monitoring of various biomolecules in vivo. However, two challenges limit the application of micro- and nanoelectrodes: the difficulty of highly sensitive detection of nonelectroactive molecules and the specific detection of target molecules in complex biological environments. Herein, we propose an electrochemical microsensor based on an entropy-driven multipedal DNA walker for the highly sensitive and selective detection of ATP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!