Methane, the principal component of natural gas, is an important energy source and raw material for chemical reactions. It also plays a significant role in planetary physics, being one of the major constituents of giant planets. Here, we report measurements of the molecular self-diffusion coefficient of dense supercritical CH reaching the freezing pressure. We find that the high-pressure behaviour of the self-diffusion coefficient measured by quasi-elastic neutron scattering at 300 K departs from that expected for a dense fluid of hard spheres and suggests a density-dependent molecular diameter. Breakdown of the Stokes-Einstein-Sutherland relation is observed and the experimental results suggest the existence of another scaling between self-diffusion coefficient D and shear viscosity η, in such a way that Dη/ρ=constant at constant temperature, with ρ the density. These findings underpin the lack of a simple model for dense fluids including the pressure dependence of their transport properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8009954 | PMC |
http://dx.doi.org/10.1038/s41467-021-22182-4 | DOI Listing |
ACS Omega
December 2024
Shaanxi Yanchang Petroleum (Group) Co., Ltd., Xi'an, Shaanxi Province 710000, P. R. China.
Supercritical-dense phase CO pipeline transportation has been proven to have excellent economic and safety benefits for long-distance CO transportation in large-scale. Hydrates are easily generated in the high-pressure and low-temperature sections, resulting in blockage, so it is necessary to build the prediction model for hydrate formation in the long-distance CO pipeline transportation. In the prediction model of hydrate formation of our work, the phase equilibrium was determined by the Chen-Guo model, and the lateral growth of hydrate was calculated by the comprehensive growth model, and the hydrate growth was estimated by analogy with the condensation process.
View Article and Find Full Text PDFHeliyon
October 2024
Hunan Engineering Research Center of Structural Safety and Disaster Prevention for Urban Underground Infrastructure, College of Civil Engineering, Hunan City University, Yiyang, Hunan, 413000, China.
Molecules
July 2024
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
Coherent Ising machines (CIMs), leveraging the bistable physical properties of coherent light to emulate Ising spins, exhibit great potential as hardware accelerators for tackling complex combinatorial optimization problems. Recent advances have demonstrated that the performance of CIMs can be enhanced either by incorporating large random noise or higher-order nonlinearities, yet their combined effects on CIM performance remain mainly unexplored. In this work, we develop a numerical CIM model that utilizes a tunable fifth-order polynomial nonlinear dynamic function under large noise levels, which has the potential to be implemented in all-optical platforms.
View Article and Find Full Text PDFJ Phys Chem Lett
June 2024
University of Lille, CNRS UMR 8516 -LASIRe - Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'environnement, 59000 Lille, France.
Performing molecular dynamics simulations with the TIP4P/2005 water model along 9 isobars (from 175 to 375 bar) in the temperature range between 300 and 1100 K, we have found that the loci of the extrema in the rate of change of specific structural properties can be used to define purely structure-based Widom lines. We have examined several parameters that describe the local structure of water, such as the tetrahedral arrangement, nearest neighbor distance, local density around the molecules, and the size of the largest dense domain. The last two parameters were determined using the Voronoi polyhedral and density-based spatial clustering of applications with noise methods, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!