The molecular mechanism behind insulin protective effects on testicular tissue of hyperglycemic rats.

Life Sci

Division of Pharmacology and Toxicology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.

Published: July 2021

Aims: The present study assessed the possible mechanisms by which the insulin regulates the heat shock (HSPs) and transitional proteins expression and consequently ameliorates the oxidative stress-induced damages in germ and sperm cells DNA contents.

Main Methods: Mature male Wistar rats were distributed into control, Hyperglycemia-induced (HG) and insulin-treated HG-induced (HG-I) groups. Following 8 weeks from HG induction, testicular total antioxidant capacity (TAC), immunoreactivity of 8-oxodG, germ cells mRNA damage, Hsp70-2a, Hsp90, transitional proteins 1 and 2 (TP-1 and -2) mRNA and protein expressions were analyzed. Moreover, the sperm chromatin condensation was assessed by aniline-blue staining, and DNA integrity of germ and sperm cells were analyzed by TUNEL and acrdine-orange staining techniques.

Key Findings: The HG animals exhibited significant (p < 0.05) reduction in TAC, HSp70-2a, TP-1 and TP-2 expression levels, and increment in 8-oxodG immunoreactivity, mRNA damage, and Hsp90 expression. However, insulin treatment resulted in (p < 0.05) enhanced TAC level, Hsp70-2a, Hsp90, TP-1 and TP-2 expressions, besides reduced 8-oxodG immunoreactivity and mRNA damage compared to the HG group (p < 0.05). The chromatin condensation and the germ and sperm cells DNA fragmentation were decreased in HG-I group.

Significance: Insulin treatment amplifies the testicular TAC level, improves the Hsp70-2a, TP-1, and TP-2 expressions, and boosts the Hsp90-mediated role in DNA repairment process. Consequently, altogether could maintain the HG-induced DNA integrity in the testicular and sperm cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2021.119394DOI Listing

Publication Analysis

Top Keywords

transitional proteins
8
germ sperm
8
sperm cells
8
molecular mechanism
4
mechanism insulin
4
insulin protective
4
protective effects
4
effects testicular
4
testicular tissue
4
tissue hyperglycemic
4

Similar Publications

Cell proliferation suppressor RBR1 interacts with ARID1 to promote pollen mitosis via stabilizing DUO1 in Arabidopsis.

New Phytol

January 2025

State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.

In plants, sperm cell formation involves two rounds of pollen mitoses, in which the microspore initiates the first pollen mitosis (PMI) to produce a vegetative cell and a generative cell, then the generative cell continues the second mitosis (PMII) to produce two sperm cells. DUO1, a R2R3 Myb transcription factor, is activated in the generative cell to promote S-G2/M transition during PMII. Loss-of-function of DUO1 caused a complete arrest of PMII.

View Article and Find Full Text PDF

Unlabelled: Breast cancer is the most common malignancy in the women. Chemotherapy is a crucial part of breast cancer treatment especially for advanced and metastatic forms of the disease. However, chemotherapy has limitations due to tumor heterogeneity, chemoresistance, and side effects.

View Article and Find Full Text PDF

This study investigates the synergistic inhibitory effects of combining the stimulator of interferon genes (STING) agonist cyclic diadenylate monophosphate (c-di-AMP) and ginsenoside RG3 on cisplatin (DDP)-resistant gastric cancer (GC) cells. The objective is to identify novel therapeutic targets and offers insights for the clinical management of DDP resistance. Various techniques were employed, including western blot, MTT assay, colony formation assay, scratch assay, transwell assay, tubule formation assay, flow cytometry, Hoechst 33342 fluorescence staining, and in vivo experiments, to investigate the potential mechanisms and effects of the combined application of the STING agonist and ginsenoside RG3 in reversing cisplatin resistance in gastric cancer.

View Article and Find Full Text PDF

Polarity and migration of cranial and cardiac neural crest cells: underlying molecular mechanisms and disease implications.

Front Cell Dev Biol

January 2025

Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.

The Neural Crest cells are multipotent progenitor cells formed at the neural plate border that differentiate and give rise to a wide range of cell types and organs. Directional migration of NC cells and their correct positioning at target sites are essential during embryonic development, and defects in these processes results in congenital diseases. The NC migration begins with the epithelial-mesenchymal transition and extracellular matrix remodeling.

View Article and Find Full Text PDF

CD36 enrichment in HER2-positive mesenchymal stem cells drives therapy refractoriness in breast cancer.

J Exp Clin Cancer Res

January 2025

Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Amadeolab Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Milan, Italy.

Background: Growing evidence shows that the reprogramming of fatty acid (FA) metabolism plays a key role in HER2-positive (HER2 +) breast cancer (BC) aggressiveness, therapy resistance and cancer stemness. In particular, HER2 + BC has been defined as a "lipogenic disease" due to the functional and bi-directional crosstalk occurring between HER2-mediated oncogenic signaling and FA biosynthesis via FA synthase activity. In this context, the functional role exerted by the reprogramming of CD36-mediated FA uptake in HER2 + BC poor prognosis and therapy resistance remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!