AI Article Synopsis

  • The ongoing COVID-19 pandemic emphasizes the importance of saving lives and enhancing immunity through nutritional health and advanced technology support for healthcare teams.
  • Recent evidence suggests probiotics may play a beneficial role in combating COVID-19 by acting as immune modulators and antiviral agents, particularly due to their influence on gut microbiota.
  • Further preclinical and clinical studies are needed to validate the effectiveness of probiotics in COVID-19 treatment, with results from current trials pending.

Article Abstract

Saving lives and flattening the curve are the foremost priorities during the ongoing pandemic spread of SARS-CoV-2. Developing cutting-edge technology and collating available evidence would support frontline health teams. Nutritional adequacy improves general health and immunity to prevent and assuage infections. This review aims to outline the potential role of probiotics in fighting the COVID-19 by covering recent evidence on the association between microbiota, probiotics, and COVID-19, the role of probiotics as an immune-modulator and antiviral agent. The high basic reproduction number (R0) of SARS-CoV-2, absence of conclusive remedies, and the pleiotropic effect of probiotics in fighting influenza and other coronaviruses together favour probiotics supplements. However, further support from preclinical and clinical studies and reviews outlining the role of probiotics in COVID-19 are critical. Results are awaited from many ongoing clinical trials investigating the benefits of probiotics in COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7972717PMC
http://dx.doi.org/10.1016/j.arcmed.2021.03.002DOI Listing

Publication Analysis

Top Keywords

role probiotics
12
probiotics covid-19
12
probiotics
8
probiotics fighting
8
covid-19
5
probiotics prevention
4
prevention treatment
4
treatment covid-19
4
covid-19 current
4
current perspective
4

Similar Publications

Antimicrobial peptides (AMPs) are small, positively charged biomolecules produced by various organisms such as animals, microbes, and plants. These AMPs play a significant role in defense mechanisms and protect from adverse conditions. The emerging problem of drug resistance in microbes poses a global health challenge in treating diseases.

View Article and Find Full Text PDF

Lactiplantibacillus plantarum P101 Alleviates Liver Toxicity of Combined Microplastics and Di-(2-Ethylhexyl) Phthalate via Regulating Gut Microbiota.

Probiotics Antimicrob Proteins

January 2025

State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.

Microplastics (MPs) and Di-(2-ethylhexyl) phthalate (DEHP) as emerging contaminants, have caused increasing concern due to their co-exposure risks and toxicities to humans. Lactic acid bacteria have been demonstrated to play a significant role in the mitigation of organismal damage. Probiotic intervention is widely recognized as a safe and healthy therapeutic strategy for targeting the mitigation of organic damage.

View Article and Find Full Text PDF

Sleep disturbances are increasingly prevalent, significantly impacting physical and mental health. Recent research reveals a bidirectional relationship between gut microbiota and sleep, mediated through the microbiota-gut-brain axis. This review examines the role of gut microbiota in sleep physiology and explores how biotics, including probiotics, prebiotics, synbiotics, postbiotics, and fermented foods, can enhance sleep quality.

View Article and Find Full Text PDF

Background: Irritable bowel syndrome (IBS) is a common gastrointestinal disease. Recently, an increasing number of studies have shown that Toll-like receptor 4 (TLR4), widely distributed on the surface of a variety of epithelial cells (ECs) and immune sentinel cells in the gut, plays a vital role in developing IBS.

Objectives: We sought to synthesize the existing literature on TLR4 in IBS and inform further study.

View Article and Find Full Text PDF

European Foulbrood (EFB) is a severe bacterial disease affecting honeybees, primarily caused by the Gram-positive bacterium . Although the presence of is associated with EFB, it does not consistently predict the manifestation of symptoms, and the role of 'secondary invaders' in the disease's development remains a subject of ongoing debate. This review provides an updated synthesis of the microbial ecological factors that influence the expression of EFB symptoms, which have often been overlooked in previous research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!