A rise in fragility as a system approaches a tipping point may be sometimes estimated using dynamical indicators of resilience (DIORs) that measure the characteristic slowing down of recovery rates before a tipping point. A change in DIORs could be interpreted as an early warning signal for an upcoming critical transition. However, in order to be able to estimate the DIORs, observational records need to be long enough to capture the response rate of the system. As we show here, the required length of the time series depends on the response rates of the system. For instance, the current rate of anthropogenic climate forcing is fast relative to the response rate of some parts of the climate system. Therefore, we may expect difficulties estimating the resilience from modern time series. So far, there have been no systematic studies of the effects of the response rates of the dynamical systems and the rates of forcing on the detectability trends in the DIORs prior to critical transitions. Here, we quantify the performance of the resilience indicators variance and temporal autocorrelation, in systems with different response rates and for different rates of forcing. Our results show that the rapid rise of anthropogenic forcing to the Earth may make it difficult to detect changes in the resilience of ecosystems and climate elements from time series. These findings suggest that in order to determine with models whether the use of the DIORs is appropriate, we need to use realistic models that incorporate the key processes with the appropriate time constants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086860 | PMC |
http://dx.doi.org/10.1098/rsif.2020.0935 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!