Hypothetical control of postural sway.

J R Soc Interface

Department of Psychology, Grinnell College, Grinnell, IA 50112, USA.

Published: March 2021

Quiet standing exhibits strongly intermittent variability that has inspired at least two interpretations. First, variability can be intermittent through the alternating engagement and disengagement of complementary control processes at distinct scales. A second and perhaps deeper way to interpret this intermittency is through the possibility that postural control depends on cascade-like interactions across many timescales at once, suggesting specific non-Gaussian distributional properties at different timescales. Multiscale probability density function (PDF) analysis shows that quiet standing on a stable surface exhibits a crossover from low, increasing non-Gaussianity (consistent with exponential distributions) at shorter timescales, reflecting inertial control, towards higher non-Gaussianity. Feedback-based control at medium to longer timescales yields a linear decrease that is characteristic of cascade dynamics. Destabilizing quiet standing with an unstable surface or closed eyes serves to attenuate inertial control and to elicit more of the feedback-based control over progressively shorter timescales. The result was to strengthen the appearance of the linear decay indicating cascade dynamics. Finally, both linear and nonlinear indices of postural sway also govern the relative strength of crossover or of linear decay, suggesting that tempering of non-Gaussianity across log-timescale is a function of both extrinsic constraints and endogenous postural control. These results provide new evidence that cascading interactions across longer timescales supporting postural corrections can even recruit shorter timescale processes with novel task constraints that can destabilize posture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086848PMC
http://dx.doi.org/10.1098/rsif.2020.0951DOI Listing

Publication Analysis

Top Keywords

quiet standing
12
postural sway
8
postural control
8
shorter timescales
8
inertial control
8
feedback-based control
8
longer timescales
8
cascade dynamics
8
linear decay
8
control
7

Similar Publications

In quiet standing, the central nervous system implements a pre-programmed ankle strategy of postural control to maintain upright balance and stability. This strategy comprises a synchronized common neural drive delivered to synergistically grouped muscles. This study evaluated connectivity between EMG signals of the unilateral and bilateral homologous muscle pairs of the lower legs during various standing balance conditions using magnitude-squared coherence (MSC).

View Article and Find Full Text PDF

Biomechanical analysis of step-up and step-down tasks in knee osteoarthritis: Insights from leading and trailing limbs.

Clin Biomech (Bristol)

January 2025

Rehabilitation Research Institute of Singapore, Nanyang Technological University, 11 Mandalay Rd, #14-03 Clinical Sciences Building, 308232, Singapore; Department of Orthopaedic Surgery, Woodlands Health, National Healthcare Group, 737628, Singapore.

Background: Stair climbing tests are pivotal when assessing physical performance in knee osteoarthritis patients, yet the biomechanical strategies that underpin poor stair climbing ability are heterogeneously reported. Single step tasks emulate a step-by-step gait pattern, an approach associated with knee pain when stair climbing. The objective of this study is to analyse the biomechanics and electromyography activity of both the leading and trailing limbs during single Step-up and Down tasks in knee osteoarthritis patients.

View Article and Find Full Text PDF

Our ability to balance upright provides a stable platform to perform daily activities. Balance deficits associated with various clinical conditions may affect activities of daily living, highlighting the importance of quantifying standing balance in ecological environments. Although typically performed in laboratory settings, the growing availability of low-cost inertial measurement units (IMUs) allows the assessment of balance in the real world.

View Article and Find Full Text PDF

Amount of serial sitting and standing movements has been employed in clinical and research settings to assess legs' muscular strength. In this cross-sectional study, we aimed to test the correlation between the 30-s sit-to-stand power test (30STSp) outcome and body balance in older adults. We evaluated physically active male and female (n = 51) individuals with an age range of 60-80 years (M = 69.

View Article and Find Full Text PDF

Gait initiation is a fundamental human task, requiring one or more anticipatory postural adjustments (APA) prior to stepping. Deviations in amplitude and timing of APAs exist in Parkinson's disease (PD), causing dysfunctional postural control which increases the risk of falls. The motor cortex and basal ganglia have been implicated in the regulation of postural control, however, their dynamics during gait initiation, relationship to APA metrics, and response to pharmacotherapy such as levodopa are unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!