AI Article Synopsis

Article Abstract

A large amount of spent bleaching earth (SBE) solid waste is generated by the vegetable oil refining industry. This spent bleaching earth contains entrapped crude oil and in most cases, it is disposed of in its pristine state, which is considered an environmental hazard. In this work, the regeneration of SBE by pyrolysis or solvent extraction, and the conversion of the recovered entrapped vegetable oil to biodiesel are investigated. The entrapped oil was extracted using n-hexane, methanol or steam as solvents, and the SBE was regenerated by pyrolysis under inert environment of Nitrogen at 450 °C, 550 °C and 650 °C. After oil extraction, the regenerated bleaching earth (RBE) was activated and employed in virgin vegetable oil bleaching. Peroxide activated samples of methanol-extracted and pyrolyzed regenerated bleaching earth at 450 °C and 650 °C exhibit superior bleaching property; demonstrating that the SBE could be regenerated to have superior bleaching capacity over fresh bleaching earth. Thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) analysis of the SBE show that methanol extracted 23.5% out of the 35% residual oil (i.e. 67% efficiency) compared to 15.7% (i.e. 45% efficiency) by n-hexane, while pyrolysis extracted 33% out of the 35% residual oil (i.e. 95% efficiency). GC-MS analysis of the produced biodiesel shows that the n-hexane extracted oil produces more fatty acid methyl esters (FAME). Therefore, the choice of solvent depends on the intended application; as methanol regenerates the SBE better while retaining its adsorptive properties, while n-hexane gives a better biodiesel yield.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2021.03.024DOI Listing

Publication Analysis

Top Keywords

bleaching earth
24
spent bleaching
12
vegetable oil
12
oil
10
bleaching
9
conversion recovered
8
oil biodiesel
8
sbe regenerated
8
regenerated bleaching
8
superior bleaching
8

Similar Publications

Certain coral individuals exhibit enhanced resistance to thermal bleaching, yet the specific microbial assemblages and their roles in these phenotypes remain unclear. We compared the microbial communities of thermal bleaching-resistant (TBR) and thermal bleaching-sensitive (TBS) corals using metabarcoding and metagenomics. Our multidomain approach revealed stable distinct microbial compositions between thermal phenotypes.

View Article and Find Full Text PDF

There is still much to be learned about the properties of siderophores and their applications. This study was designed to characterize and optimize the production of the siderophore produced by a marine bacterium Pseudomonas sp. strain ASA235 and then evaluate their use in bioleaching of rare earth elements (REEs) from spent Nickel-metal hydride (NiMH) batteries.

View Article and Find Full Text PDF

Long Persistent Luminescence in Cu-Doped SrGaGeO for Information Storage and Encryption.

Inorg Chem

January 2025

Center of Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.

Information storage and encryption are the key technologies for modern information transmission. However, most optical information storage technologies based on long persistent luminescent (PersL) only have one fixed response mode, which is easy to imitate, limiting their security in advanced information storage and encryption applications. Besides, the cost of rare earth-doped PersL materials restricts their wide application.

View Article and Find Full Text PDF

Climate change is imposing multiple stressors on marine life, leading to a restructuring of ecological communities as species exhibit differential sensitivities to these stressors. With the ocean warming and wind patterns shifting, processes that drive thermal variations in coastal regions, such as marine heatwaves and upwelling events, can change in frequency, timing, duration, and severity. These changes in environmental parameters can physiologically impact organisms residing in these habitats.

View Article and Find Full Text PDF

Restoration and artificial reefs can assist the recovery of degraded reefs but are limited in scalability and climate resilience. The Mineral Accretion Technique (MAT) subjects metal artificial reefs to a low-voltage electrical current, thereby creating a calcium-carbonate coating. It has been suggested that corals on MAT structures experience enhanced health and growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!