Single-Cell Oxidative Stress Events Revealed by a Renewable SERS Nanotip.

ACS Sens

State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.

Published: April 2021

A nanotip sensitive to reactive oxygen species (ROS) and NAD/NADH (oxidized/reduced forms of nicotinamide adenine dinucleotide) was designed and prepared to identify the redox events in a single living cell by surface-enhanced Raman scattering (SERS) spectroscopy. The nanotips were prepared by the one-step laser-induced Ag growth and deposition. A redox-reversible Raman reporter, 4-mercaptophenol (4-MP), was employed for the nanotip decoration along with the Ag deposition. 4-MP can be converted to SERS-inactive 4-mercaptocyclohexa-2,5-dienone (4-MC) by Fe ions to complete signal rezeroing for multiple oxidative stress event loops. The SERS signal conversion from 4-MC to 4-MP provides a cue for the reduction process that is NADH-dependent. In contrast, by the conversion from 4-MP to 4-MC, the oxidative stress events and the signal transduction mechanism of cells stimulated by drugs (phorbol 12-myristate 13-acetate and HO) can be explored by SERS. This sensor is easy to fabricate and can be recycled. This tip-typed SERS nanosensor can be extendedly available for tracing other key markers in other NAD/NADH-mediated respiratory chain and glycolysis, e.g., lactic acid, pyruvic acid, adenosine triphosphate, and antioxidants. It will be useful for investigating the diseases of abnormal oxidative stress and mitochondrial metabolism at the single-cell level.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.1c00395DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
stress events
8
sers
5
single-cell oxidative
4
stress
4
events revealed
4
revealed renewable
4
renewable sers
4
sers nanotip
4
nanotip nanotip
4

Similar Publications

Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.

Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.

View Article and Find Full Text PDF

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) encompass various etiologies and are distinguished by the onset of acute pulmonary inflammation and heightened permeability of the pulmonary vasculature, often leading to substantial morbidity and frequent mortality. There is a scarcity of viable approaches for treating effectively. In recent decades, acupuncture has been proven to be antiinflammatory.

View Article and Find Full Text PDF

Background: Morphine, a mu-opioid receptor (MOR) agonist commonly utilized in clinical settings alongside chemotherapy to manage chronic pain in cancer patients, has exhibited contradictory effects on cancer, displaying specificity toward certain cancer types and doses.

Objective: The aim of this study was to conduct a systematic assessment and comparison of the impacts of morphine on three distinct cancer models in a preclinical setting.

Methods: Viability and apoptosis assays were conducted on a panel of cancer cell lines following treatment with morphine, chemotherapy drugs alone, or their combination.

View Article and Find Full Text PDF

Enhancing metformin efficacy with cholecalciferol and taurine in diabetes therapy: Potential and limitations.

World J Diabetes

January 2025

Department of Anatomy, Division of Human Biology, School of Medicine, IMU University, Kuala Lumpur 57000, Malaysia.

Diabetes mellitus, particularly type 2 diabetes mellitus (T2DM), poses a significant global health challenge. Traditional management strategies primarily focus on glycemic control; however, there is a growing need for comprehensive approaches addressing the complex pathophysiology of diabetes complications. The recent study by Attia explores the potential of a novel therapy combining metformin with cholecalciferol (vitamin D3) and taurine to mitigate T2DM-related complications in a rat model.

View Article and Find Full Text PDF

Background: Diabetes has a substantial impact on public health, highlighting the need for novel treatments. Ubiquitination, an intracellular protein modification process, is emerging as a promising strategy for regulating pathological mechanisms. We hypothesize that ubiquitination plays a critical role in the development and progression of diabetes and its complications, and that understanding these mechanisms can lead to new therapeutic approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!